|
@@ -0,0 +1,6310 @@
|
|
|
+/*
|
|
|
+ * Written by Doug Lea with assistance from members of JCP JSR-166
|
|
|
+ * Expert Group and released to the public domain, as explained at
|
|
|
+ * http://creativecommons.org/publicdomain/zero/1.0/
|
|
|
+ */
|
|
|
+
|
|
|
+package com.jeeplus.common.utils.concurrent.jsr166e;
|
|
|
+
|
|
|
+import java.io.ObjectStreamField;
|
|
|
+import java.io.Serializable;
|
|
|
+import java.lang.reflect.ParameterizedType;
|
|
|
+import java.lang.reflect.Type;
|
|
|
+import java.util.AbstractMap;
|
|
|
+import java.util.Arrays;
|
|
|
+import java.util.Collection;
|
|
|
+import java.util.ConcurrentModificationException;
|
|
|
+import java.util.Enumeration;
|
|
|
+import java.util.HashMap;
|
|
|
+import java.util.Hashtable;
|
|
|
+import java.util.Iterator;
|
|
|
+import java.util.Map;
|
|
|
+import java.util.NoSuchElementException;
|
|
|
+import java.util.Set;
|
|
|
+import java.util.concurrent.ConcurrentMap;
|
|
|
+import java.util.concurrent.atomic.AtomicInteger;
|
|
|
+import java.util.concurrent.atomic.AtomicReference;
|
|
|
+import java.util.concurrent.locks.LockSupport;
|
|
|
+import java.util.concurrent.locks.ReentrantLock;
|
|
|
+
|
|
|
+/**
|
|
|
+ * http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/RecursiveTask.java 1.126
|
|
|
+ *
|
|
|
+ * A hash table supporting full concurrency of retrievals and
|
|
|
+ * high expected concurrency for updates. This class obeys the
|
|
|
+ * same functional specification as {@link Hashtable}, and
|
|
|
+ * includes versions of methods corresponding to each method of
|
|
|
+ * {@code Hashtable}. However, even though all operations are
|
|
|
+ * thread-safe, retrieval operations do <em>not</em> entail locking,
|
|
|
+ * and there is <em>not</em> any support for locking the entire table
|
|
|
+ * in a way that prevents all access. This class is fully
|
|
|
+ * interoperable with {@code Hashtable} in programs that rely on its
|
|
|
+ * thread safety but not on its synchronization details.
|
|
|
+ *
|
|
|
+ * <p>Retrieval operations (including {@code get}) generally do not
|
|
|
+ * block, so may overlap with update operations (including {@code put}
|
|
|
+ * and {@code remove}). Retrievals reflect the results of the most
|
|
|
+ * recently <em>completed</em> update operations holding upon their
|
|
|
+ * onset. (More formally, an update operation for a given key bears a
|
|
|
+ * <em>happens-before</em> relation with any (non-null) retrieval for
|
|
|
+ * that key reporting the updated value.) For aggregate operations
|
|
|
+ * such as {@code putAll} and {@code clear}, concurrent retrievals may
|
|
|
+ * reflect insertion or removal of only some entries. Similarly,
|
|
|
+ * Iterators and Enumerations return elements reflecting the state of
|
|
|
+ * the hash table at some point at or since the creation of the
|
|
|
+ * iterator/enumeration. They do <em>not</em> throw {@link
|
|
|
+ * ConcurrentModificationException}. However, iterators are designed
|
|
|
+ * to be used by only one thread at a time. Bear in mind that the
|
|
|
+ * results of aggregate status methods including {@code size}, {@code
|
|
|
+ * isEmpty}, and {@code containsValue} are typically useful only when
|
|
|
+ * a map is not undergoing concurrent updates in other threads.
|
|
|
+ * Otherwise the results of these methods reflect transient states
|
|
|
+ * that may be adequate for monitoring or estimation purposes, but not
|
|
|
+ * for program control.
|
|
|
+ *
|
|
|
+ * <p>The table is dynamically expanded when there are too many
|
|
|
+ * collisions (i.e., keys that have distinct hash codes but fall into
|
|
|
+ * the same slot modulo the table size), with the expected average
|
|
|
+ * effect of maintaining roughly two bins per mapping (corresponding
|
|
|
+ * to a 0.75 load factor threshold for resizing). There may be much
|
|
|
+ * variance around this average as mappings are added and removed, but
|
|
|
+ * overall, this maintains a commonly accepted time/space tradeoff for
|
|
|
+ * hash tables. However, resizing this or any other kind of hash
|
|
|
+ * table may be a relatively slow operation. When possible, it is a
|
|
|
+ * good idea to provide a size estimate as an optional {@code
|
|
|
+ * initialCapacity} constructor argument. An additional optional
|
|
|
+ * {@code loadFactor} constructor argument provides a further means of
|
|
|
+ * customizing initial table capacity by specifying the table density
|
|
|
+ * to be used in calculating the amount of space to allocate for the
|
|
|
+ * given number of elements. Also, for compatibility with previous
|
|
|
+ * versions of this class, constructors may optionally specify an
|
|
|
+ * expected {@code concurrencyLevel} as an additional hint for
|
|
|
+ * internal sizing. Note that using many keys with exactly the same
|
|
|
+ * {@code hashCode()} is a sure way to slow down performance of any
|
|
|
+ * hash table. To ameliorate impact, when keys are {@link Comparable},
|
|
|
+ * this class may use comparison order among keys to help break ties.
|
|
|
+ *
|
|
|
+ * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
|
|
|
+ * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
|
|
|
+ * (using {@link #keySet(Object)} when only keys are of interest, and the
|
|
|
+ * mapped values are (perhaps transiently) not used or all take the
|
|
|
+ * same mapping value.
|
|
|
+ *
|
|
|
+ * <p>This class and its views and iterators implement all of the
|
|
|
+ * <em>optional</em> methods of the {@link Map} and {@link Iterator}
|
|
|
+ * interfaces.
|
|
|
+ *
|
|
|
+ * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
|
|
|
+ * does <em>not</em> allow {@code null} to be used as a key or value.
|
|
|
+ *
|
|
|
+ * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
|
|
|
+ * operations that are designed
|
|
|
+ * to be safely, and often sensibly, applied even with maps that are
|
|
|
+ * being concurrently updated by other threads; for example, when
|
|
|
+ * computing a snapshot summary of the values in a shared registry.
|
|
|
+ * There are three kinds of operation, each with four forms, accepting
|
|
|
+ * functions with Keys, Values, Entries, and (Key, Value) arguments
|
|
|
+ * and/or return values. Because the elements of a ConcurrentHashMapV8
|
|
|
+ * are not ordered in any particular way, and may be processed in
|
|
|
+ * different orders in different parallel executions, the correctness
|
|
|
+ * of supplied functions should not depend on any ordering, or on any
|
|
|
+ * other objects or values that may transiently change while
|
|
|
+ * computation is in progress; and except for forEach actions, should
|
|
|
+ * ideally be side-effect-free. Bulk operations on {@link Entry}
|
|
|
+ * objects do not support method {@code setValue}.
|
|
|
+ *
|
|
|
+ * <ul>
|
|
|
+ * <li>forEach: Perform a given action on each element.
|
|
|
+ * A variant form applies a given transformation on each element
|
|
|
+ * before performing the action.
|
|
|
+ *
|
|
|
+ * <li>search: Return the first available non-null result of
|
|
|
+ * applying a given function on each element; skipping further
|
|
|
+ * search when a result is found.
|
|
|
+ *
|
|
|
+ * <li>reduce: Accumulate each element. The supplied reduction
|
|
|
+ * function cannot rely on ordering (more formally, it should be
|
|
|
+ * both associative and commutative). There are five variants:
|
|
|
+ *
|
|
|
+ * <ul>
|
|
|
+ *
|
|
|
+ * <li>Plain reductions. (There is not a form of this method for
|
|
|
+ * (key, value) function arguments since there is no corresponding
|
|
|
+ * return type.)
|
|
|
+ *
|
|
|
+ * <li>Mapped reductions that accumulate the results of a given
|
|
|
+ * function applied to each element.
|
|
|
+ *
|
|
|
+ * <li>Reductions to scalar doubles, longs, and ints, using a
|
|
|
+ * given basis value.
|
|
|
+ *
|
|
|
+ * </ul>
|
|
|
+ * </ul>
|
|
|
+ *
|
|
|
+ * <p>These bulk operations accept a {@code parallelismThreshold}
|
|
|
+ * argument. Methods proceed sequentially if the current map size is
|
|
|
+ * estimated to be less than the given threshold. Using a value of
|
|
|
+ * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
|
|
|
+ * of {@code 1} results in maximal parallelism by partitioning into
|
|
|
+ * enough subtasks to fully utilize the {@link
|
|
|
+ * ForkJoinPool#commonPool()} that is used for all parallel
|
|
|
+ * computations. Normally, you would initially choose one of these
|
|
|
+ * extreme values, and then measure performance of using in-between
|
|
|
+ * values that trade off overhead versus throughput.
|
|
|
+ *
|
|
|
+ * <p>The concurrency properties of bulk operations follow
|
|
|
+ * from those of ConcurrentHashMapV8: Any non-null result returned
|
|
|
+ * from {@code get(key)} and related access methods bears a
|
|
|
+ * happens-before relation with the associated insertion or
|
|
|
+ * update. The result of any bulk operation reflects the
|
|
|
+ * composition of these per-element relations (but is not
|
|
|
+ * necessarily atomic with respect to the map as a whole unless it
|
|
|
+ * is somehow known to be quiescent). Conversely, because keys
|
|
|
+ * and values in the map are never null, null serves as a reliable
|
|
|
+ * atomic indicator of the current lack of any result. To
|
|
|
+ * maintain this property, null serves as an implicit basis for
|
|
|
+ * all non-scalar reduction operations. For the double, long, and
|
|
|
+ * int versions, the basis should be one that, when combined with
|
|
|
+ * any other value, returns that other value (more formally, it
|
|
|
+ * should be the identity element for the reduction). Most common
|
|
|
+ * reductions have these properties; for example, computing a sum
|
|
|
+ * with basis 0 or a minimum with basis MAX_VALUE.
|
|
|
+ *
|
|
|
+ * <p>Search and transformation functions provided as arguments
|
|
|
+ * should similarly return null to indicate the lack of any result
|
|
|
+ * (in which case it is not used). In the case of mapped
|
|
|
+ * reductions, this also enables transformations to serve as
|
|
|
+ * filters, returning null (or, in the case of primitive
|
|
|
+ * specializations, the identity basis) if the element should not
|
|
|
+ * be combined. You can create compound transformations and
|
|
|
+ * filterings by composing them yourself under this "null means
|
|
|
+ * there is nothing there now" rule before using them in search or
|
|
|
+ * reduce operations.
|
|
|
+ *
|
|
|
+ * <p>Methods accepting and/or returning Entry arguments maintain
|
|
|
+ * key-value associations. They may be useful for example when
|
|
|
+ * finding the key for the greatest value. Note that "plain" Entry
|
|
|
+ * arguments can be supplied using {@code new
|
|
|
+ * AbstractMap.SimpleEntry(k,v)}.
|
|
|
+ *
|
|
|
+ * <p>Bulk operations may complete abruptly, throwing an
|
|
|
+ * exception encountered in the application of a supplied
|
|
|
+ * function. Bear in mind when handling such exceptions that other
|
|
|
+ * concurrently executing functions could also have thrown
|
|
|
+ * exceptions, or would have done so if the first exception had
|
|
|
+ * not occurred.
|
|
|
+ *
|
|
|
+ * <p>Speedups for parallel compared to sequential forms are common
|
|
|
+ * but not guaranteed. Parallel operations involving brief functions
|
|
|
+ * on small maps may execute more slowly than sequential forms if the
|
|
|
+ * underlying work to parallelize the computation is more expensive
|
|
|
+ * than the computation itself. Similarly, parallelization may not
|
|
|
+ * lead to much actual parallelism if all processors are busy
|
|
|
+ * performing unrelated tasks.
|
|
|
+ *
|
|
|
+ * <p>All arguments to all task methods must be non-null.
|
|
|
+ *
|
|
|
+ * <p><em>jsr166e note: During transition, this class
|
|
|
+ * uses nested functional interfaces with different names but the
|
|
|
+ * same forms as those expected for JDK8.</em>
|
|
|
+ *
|
|
|
+ * <p>This class is a member of the
|
|
|
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
|
|
|
+ * Java Collections Framework</a>.
|
|
|
+ *
|
|
|
+ * @since 1.5
|
|
|
+ * @author Doug Lea
|
|
|
+ * @param <K> the type of keys maintained by this map
|
|
|
+ * @param <V> the type of mapped values
|
|
|
+ */
|
|
|
+public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
|
|
|
+ implements ConcurrentMap<K,V>, Serializable {
|
|
|
+ private static final long serialVersionUID = 7249069246763182397L;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * An object for traversing and partitioning elements of a source.
|
|
|
+ * This interface provides a subset of the functionality of JDK8
|
|
|
+ * java.util.Spliterator.
|
|
|
+ */
|
|
|
+ public static interface ConcurrentHashMapSpliterator<T> {
|
|
|
+ /**
|
|
|
+ * If possible, returns a new spliterator covering
|
|
|
+ * approximately one half of the elements, which will not be
|
|
|
+ * covered by this spliterator. Returns null if cannot be
|
|
|
+ * split.
|
|
|
+ */
|
|
|
+ ConcurrentHashMapSpliterator<T> trySplit();
|
|
|
+ /**
|
|
|
+ * Returns an estimate of the number of elements covered by
|
|
|
+ * this Spliterator.
|
|
|
+ */
|
|
|
+ long estimateSize();
|
|
|
+
|
|
|
+ /** Applies the action to each untraversed element */
|
|
|
+ void forEachRemaining(Action<? super T> action);
|
|
|
+ /** If an element remains, applies the action and returns true. */
|
|
|
+ boolean tryAdvance(Action<? super T> action);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Sams
|
|
|
+ /** Interface describing a void action of one argument */
|
|
|
+ public interface Action<A> { void apply(A a); }
|
|
|
+ /** Interface describing a void action of two arguments */
|
|
|
+ public interface BiAction<A,B> { void apply(A a, B b); }
|
|
|
+ /** Interface describing a function of one argument */
|
|
|
+ public interface Fun<A,T> { T apply(A a); }
|
|
|
+ /** Interface describing a function of two arguments */
|
|
|
+ public interface BiFun<A,B,T> { T apply(A a, B b); }
|
|
|
+ /** Interface describing a function mapping its argument to a double */
|
|
|
+ public interface ObjectToDouble<A> { double apply(A a); }
|
|
|
+ /** Interface describing a function mapping its argument to a long */
|
|
|
+ public interface ObjectToLong<A> { long apply(A a); }
|
|
|
+ /** Interface describing a function mapping its argument to an int */
|
|
|
+ public interface ObjectToInt<A> {int apply(A a); }
|
|
|
+ /** Interface describing a function mapping two arguments to a double */
|
|
|
+ public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
|
|
|
+ /** Interface describing a function mapping two arguments to a long */
|
|
|
+ public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
|
|
|
+ /** Interface describing a function mapping two arguments to an int */
|
|
|
+ public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
|
|
|
+ /** Interface describing a function mapping two doubles to a double */
|
|
|
+ public interface DoubleByDoubleToDouble { double apply(double a, double b); }
|
|
|
+ /** Interface describing a function mapping two longs to a long */
|
|
|
+ public interface LongByLongToLong { long apply(long a, long b); }
|
|
|
+ /** Interface describing a function mapping two ints to an int */
|
|
|
+ public interface IntByIntToInt { int apply(int a, int b); }
|
|
|
+
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Overview:
|
|
|
+ *
|
|
|
+ * The primary design goal of this hash table is to maintain
|
|
|
+ * concurrent readability (typically method get(), but also
|
|
|
+ * iterators and related methods) while minimizing update
|
|
|
+ * contention. Secondary goals are to keep space consumption about
|
|
|
+ * the same or better than java.util.HashMap, and to support high
|
|
|
+ * initial insertion rates on an empty table by many threads.
|
|
|
+ *
|
|
|
+ * This map usually acts as a binned (bucketed) hash table. Each
|
|
|
+ * key-value mapping is held in a Node. Most nodes are instances
|
|
|
+ * of the basic Node class with hash, key, value, and next
|
|
|
+ * fields. However, various subclasses exist: TreeNodes are
|
|
|
+ * arranged in balanced trees, not lists. TreeBins hold the roots
|
|
|
+ * of sets of TreeNodes. ForwardingNodes are placed at the heads
|
|
|
+ * of bins during resizing. ReservationNodes are used as
|
|
|
+ * placeholders while establishing values in computeIfAbsent and
|
|
|
+ * related methods. The types TreeBin, ForwardingNode, and
|
|
|
+ * ReservationNode do not hold normal user keys, values, or
|
|
|
+ * hashes, and are readily distinguishable during search etc
|
|
|
+ * because they have negative hash fields and null key and value
|
|
|
+ * fields. (These special nodes are either uncommon or transient,
|
|
|
+ * so the impact of carrying around some unused fields is
|
|
|
+ * insignificant.)
|
|
|
+ *
|
|
|
+ * The table is lazily initialized to a power-of-two size upon the
|
|
|
+ * first insertion. Each bin in the table normally contains a
|
|
|
+ * list of Nodes (most often, the list has only zero or one Node).
|
|
|
+ * Table accesses require volatile/atomic reads, writes, and
|
|
|
+ * CASes. Because there is no other way to arrange this without
|
|
|
+ * adding further indirections, we use intrinsics
|
|
|
+ * (sun.misc.Unsafe) operations.
|
|
|
+ *
|
|
|
+ * We use the top (sign) bit of Node hash fields for control
|
|
|
+ * purposes -- it is available anyway because of addressing
|
|
|
+ * constraints. Nodes with negative hash fields are specially
|
|
|
+ * handled or ignored in map methods.
|
|
|
+ *
|
|
|
+ * Insertion (via put or its variants) of the first node in an
|
|
|
+ * empty bin is performed by just CASing it to the bin. This is
|
|
|
+ * by far the most common case for put operations under most
|
|
|
+ * key/hash distributions. Other update operations (insert,
|
|
|
+ * delete, and replace) require locks. We do not want to waste
|
|
|
+ * the space required to associate a distinct lock object with
|
|
|
+ * each bin, so instead use the first node of a bin list itself as
|
|
|
+ * a lock. Locking support for these locks relies on builtin
|
|
|
+ * "synchronized" monitors.
|
|
|
+ *
|
|
|
+ * Using the first node of a list as a lock does not by itself
|
|
|
+ * suffice though: When a node is locked, any update must first
|
|
|
+ * validate that it is still the first node after locking it, and
|
|
|
+ * retry if not. Because new nodes are always appended to lists,
|
|
|
+ * once a node is first in a bin, it remains first until deleted
|
|
|
+ * or the bin becomes invalidated (upon resizing).
|
|
|
+ *
|
|
|
+ * The main disadvantage of per-bin locks is that other update
|
|
|
+ * operations on other nodes in a bin list protected by the same
|
|
|
+ * lock can stall, for example when user equals() or mapping
|
|
|
+ * functions take a long time. However, statistically, under
|
|
|
+ * random hash codes, this is not a common problem. Ideally, the
|
|
|
+ * frequency of nodes in bins follows a Poisson distribution
|
|
|
+ * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
|
|
|
+ * parameter of about 0.5 on average, given the resizing threshold
|
|
|
+ * of 0.75, although with a large variance because of resizing
|
|
|
+ * granularity. Ignoring variance, the expected occurrences of
|
|
|
+ * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
|
|
|
+ * first values are:
|
|
|
+ *
|
|
|
+ * 0: 0.60653066
|
|
|
+ * 1: 0.30326533
|
|
|
+ * 2: 0.07581633
|
|
|
+ * 3: 0.01263606
|
|
|
+ * 4: 0.00157952
|
|
|
+ * 5: 0.00015795
|
|
|
+ * 6: 0.00001316
|
|
|
+ * 7: 0.00000094
|
|
|
+ * 8: 0.00000006
|
|
|
+ * more: less than 1 in ten million
|
|
|
+ *
|
|
|
+ * Lock contention probability for two threads accessing distinct
|
|
|
+ * elements is roughly 1 / (8 * #elements) under random hashes.
|
|
|
+ *
|
|
|
+ * Actual hash code distributions encountered in practice
|
|
|
+ * sometimes deviate significantly from uniform randomness. This
|
|
|
+ * includes the case when N > (1<<30), so some keys MUST collide.
|
|
|
+ * Similarly for dumb or hostile usages in which multiple keys are
|
|
|
+ * designed to have identical hash codes or ones that differs only
|
|
|
+ * in masked-out high bits. So we use a secondary strategy that
|
|
|
+ * applies when the number of nodes in a bin exceeds a
|
|
|
+ * threshold. These TreeBins use a balanced tree to hold nodes (a
|
|
|
+ * specialized form of red-black trees), bounding search time to
|
|
|
+ * O(log N). Each search step in a TreeBin is at least twice as
|
|
|
+ * slow as in a regular list, but given that N cannot exceed
|
|
|
+ * (1<<64) (before running out of addresses) this bounds search
|
|
|
+ * steps, lock hold times, etc, to reasonable constants (roughly
|
|
|
+ * 100 nodes inspected per operation worst case) so long as keys
|
|
|
+ * are Comparable (which is very common -- String, Long, etc).
|
|
|
+ * TreeBin nodes (TreeNodes) also maintain the same "next"
|
|
|
+ * traversal pointers as regular nodes, so can be traversed in
|
|
|
+ * iterators in the same way.
|
|
|
+ *
|
|
|
+ * The table is resized when occupancy exceeds a percentage
|
|
|
+ * threshold (nominally, 0.75, but see below). Any thread
|
|
|
+ * noticing an overfull bin may assist in resizing after the
|
|
|
+ * initiating thread allocates and sets up the replacement array.
|
|
|
+ * However, rather than stalling, these other threads may proceed
|
|
|
+ * with insertions etc. The use of TreeBins shields us from the
|
|
|
+ * worst case effects of overfilling while resizes are in
|
|
|
+ * progress. Resizing proceeds by transferring bins, one by one,
|
|
|
+ * from the table to the next table. However, threads claim small
|
|
|
+ * blocks of indices to transfer (via field transferIndex) before
|
|
|
+ * doing so, reducing contention. A generation stamp in field
|
|
|
+ * sizeCtl ensures that resizings do not overlap. Because we are
|
|
|
+ * using power-of-two expansion, the elements from each bin must
|
|
|
+ * either stay at same index, or move with a power of two
|
|
|
+ * offset. We eliminate unnecessary node creation by catching
|
|
|
+ * cases where old nodes can be reused because their next fields
|
|
|
+ * won't change. On average, only about one-sixth of them need
|
|
|
+ * cloning when a table doubles. The nodes they replace will be
|
|
|
+ * garbage collectable as soon as they are no longer referenced by
|
|
|
+ * any reader thread that may be in the midst of concurrently
|
|
|
+ * traversing table. Upon transfer, the old table bin contains
|
|
|
+ * only a special forwarding node (with hash field "MOVED") that
|
|
|
+ * contains the next table as its key. On encountering a
|
|
|
+ * forwarding node, access and update operations restart, using
|
|
|
+ * the new table.
|
|
|
+ *
|
|
|
+ * Each bin transfer requires its bin lock, which can stall
|
|
|
+ * waiting for locks while resizing. However, because other
|
|
|
+ * threads can join in and help resize rather than contend for
|
|
|
+ * locks, average aggregate waits become shorter as resizing
|
|
|
+ * progresses. The transfer operation must also ensure that all
|
|
|
+ * accessible bins in both the old and new table are usable by any
|
|
|
+ * traversal. This is arranged in part by proceeding from the
|
|
|
+ * last bin (table.length - 1) up towards the first. Upon seeing
|
|
|
+ * a forwarding node, traversals (see class Traverser) arrange to
|
|
|
+ * move to the new table without revisiting nodes. To ensure that
|
|
|
+ * no intervening nodes are skipped even when moved out of order,
|
|
|
+ * a stack (see class TableStack) is created on first encounter of
|
|
|
+ * a forwarding node during a traversal, to maintain its place if
|
|
|
+ * later processing the current table. The need for these
|
|
|
+ * save/restore mechanics is relatively rare, but when one
|
|
|
+ * forwarding node is encountered, typically many more will be.
|
|
|
+ * So Traversers use a simple caching scheme to avoid creating so
|
|
|
+ * many new TableStack nodes. (Thanks to Peter Levart for
|
|
|
+ * suggesting use of a stack here.)
|
|
|
+ *
|
|
|
+ * The traversal scheme also applies to partial traversals of
|
|
|
+ * ranges of bins (via an alternate Traverser constructor)
|
|
|
+ * to support partitioned aggregate operations. Also, read-only
|
|
|
+ * operations give up if ever forwarded to a null table, which
|
|
|
+ * provides support for shutdown-style clearing, which is also not
|
|
|
+ * currently implemented.
|
|
|
+ *
|
|
|
+ * Lazy table initialization minimizes footprint until first use,
|
|
|
+ * and also avoids resizings when the first operation is from a
|
|
|
+ * putAll, constructor with map argument, or deserialization.
|
|
|
+ * These cases attempt to override the initial capacity settings,
|
|
|
+ * but harmlessly fail to take effect in cases of races.
|
|
|
+ *
|
|
|
+ * The element count is maintained using a specialization of
|
|
|
+ * LongAdder. We need to incorporate a specialization rather than
|
|
|
+ * just use a LongAdder in order to access implicit
|
|
|
+ * contention-sensing that leads to creation of multiple
|
|
|
+ * CounterCells. The counter mechanics avoid contention on
|
|
|
+ * updates but can encounter cache thrashing if read too
|
|
|
+ * frequently during concurrent access. To avoid reading so often,
|
|
|
+ * resizing under contention is attempted only upon adding to a
|
|
|
+ * bin already holding two or more nodes. Under uniform hash
|
|
|
+ * distributions, the probability of this occurring at threshold
|
|
|
+ * is around 13%, meaning that only about 1 in 8 puts check
|
|
|
+ * threshold (and after resizing, many fewer do so).
|
|
|
+ *
|
|
|
+ * TreeBins use a special form of comparison for search and
|
|
|
+ * related operations (which is the main reason we cannot use
|
|
|
+ * existing collections such as TreeMaps). TreeBins contain
|
|
|
+ * Comparable elements, but may contain others, as well as
|
|
|
+ * elements that are Comparable but not necessarily Comparable for
|
|
|
+ * the same T, so we cannot invoke compareTo among them. To handle
|
|
|
+ * this, the tree is ordered primarily by hash value, then by
|
|
|
+ * Comparable.compareTo order if applicable. On lookup at a node,
|
|
|
+ * if elements are not comparable or compare as 0 then both left
|
|
|
+ * and right children may need to be searched in the case of tied
|
|
|
+ * hash values. (This corresponds to the full list search that
|
|
|
+ * would be necessary if all elements were non-Comparable and had
|
|
|
+ * tied hashes.) On insertion, to keep a total ordering (or as
|
|
|
+ * close as is required here) across rebalancings, we compare
|
|
|
+ * classes and identityHashCodes as tie-breakers. The red-black
|
|
|
+ * balancing code is updated from pre-jdk-collections
|
|
|
+ * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
|
|
|
+ * based in turn on Cormen, Leiserson, and Rivest "Introduction to
|
|
|
+ * Algorithms" (CLR).
|
|
|
+ *
|
|
|
+ * TreeBins also require an additional locking mechanism. While
|
|
|
+ * list traversal is always possible by readers even during
|
|
|
+ * updates, tree traversal is not, mainly because of tree-rotations
|
|
|
+ * that may change the root node and/or its linkages. TreeBins
|
|
|
+ * include a simple read-write lock mechanism parasitic on the
|
|
|
+ * main bin-synchronization strategy: Structural adjustments
|
|
|
+ * associated with an insertion or removal are already bin-locked
|
|
|
+ * (and so cannot conflict with other writers) but must wait for
|
|
|
+ * ongoing readers to finish. Since there can be only one such
|
|
|
+ * waiter, we use a simple scheme using a single "waiter" field to
|
|
|
+ * block writers. However, readers need never block. If the root
|
|
|
+ * lock is held, they proceed along the slow traversal path (via
|
|
|
+ * next-pointers) until the lock becomes available or the list is
|
|
|
+ * exhausted, whichever comes first. These cases are not fast, but
|
|
|
+ * maximize aggregate expected throughput.
|
|
|
+ *
|
|
|
+ * Maintaining API and serialization compatibility with previous
|
|
|
+ * versions of this class introduces several oddities. Mainly: We
|
|
|
+ * leave untouched but unused constructor arguments referring to
|
|
|
+ * concurrencyLevel. We accept a loadFactor constructor argument,
|
|
|
+ * but apply it only to initial table capacity (which is the only
|
|
|
+ * time that we can guarantee to honor it.) We also declare an
|
|
|
+ * unused "Segment" class that is instantiated in minimal form
|
|
|
+ * only when serializing.
|
|
|
+ *
|
|
|
+ * Also, solely for compatibility with previous versions of this
|
|
|
+ * class, it extends AbstractMap, even though all of its methods
|
|
|
+ * are overridden, so it is just useless baggage.
|
|
|
+ *
|
|
|
+ * This file is organized to make things a little easier to follow
|
|
|
+ * while reading than they might otherwise: First the main static
|
|
|
+ * declarations and utilities, then fields, then main public
|
|
|
+ * methods (with a few factorings of multiple public methods into
|
|
|
+ * internal ones), then sizing methods, trees, traversers, and
|
|
|
+ * bulk operations.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* ---------------- Constants -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The largest possible table capacity. This value must be
|
|
|
+ * exactly 1<<30 to stay within Java array allocation and indexing
|
|
|
+ * bounds for power of two table sizes, and is further required
|
|
|
+ * because the top two bits of 32bit hash fields are used for
|
|
|
+ * control purposes.
|
|
|
+ */
|
|
|
+ private static final int MAXIMUM_CAPACITY = 1 << 30;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The default initial table capacity. Must be a power of 2
|
|
|
+ * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
|
|
|
+ */
|
|
|
+ private static final int DEFAULT_CAPACITY = 16;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The largest possible (non-power of two) array size.
|
|
|
+ * Needed by toArray and related methods.
|
|
|
+ */
|
|
|
+ static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The default concurrency level for this table. Unused but
|
|
|
+ * defined for compatibility with previous versions of this class.
|
|
|
+ */
|
|
|
+ private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The load factor for this table. Overrides of this value in
|
|
|
+ * constructors affect only the initial table capacity. The
|
|
|
+ * actual floating point value isn't normally used -- it is
|
|
|
+ * simpler to use expressions such as {@code n - (n >>> 2)} for
|
|
|
+ * the associated resizing threshold.
|
|
|
+ */
|
|
|
+ private static final float LOAD_FACTOR = 0.75f;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The bin count threshold for using a tree rather than list for a
|
|
|
+ * bin. Bins are converted to trees when adding an element to a
|
|
|
+ * bin with at least this many nodes. The value must be greater
|
|
|
+ * than 2, and should be at least 8 to mesh with assumptions in
|
|
|
+ * tree removal about conversion back to plain bins upon
|
|
|
+ * shrinkage.
|
|
|
+ */
|
|
|
+ static final int TREEIFY_THRESHOLD = 8;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The bin count threshold for untreeifying a (split) bin during a
|
|
|
+ * resize operation. Should be less than TREEIFY_THRESHOLD, and at
|
|
|
+ * most 6 to mesh with shrinkage detection under removal.
|
|
|
+ */
|
|
|
+ static final int UNTREEIFY_THRESHOLD = 6;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The smallest table capacity for which bins may be treeified.
|
|
|
+ * (Otherwise the table is resized if too many nodes in a bin.)
|
|
|
+ * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
|
|
|
+ * conflicts between resizing and treeification thresholds.
|
|
|
+ */
|
|
|
+ static final int MIN_TREEIFY_CAPACITY = 64;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Minimum number of rebinnings per transfer step. Ranges are
|
|
|
+ * subdivided to allow multiple resizer threads. This value
|
|
|
+ * serves as a lower bound to avoid resizers encountering
|
|
|
+ * excessive memory contention. The value should be at least
|
|
|
+ * DEFAULT_CAPACITY.
|
|
|
+ */
|
|
|
+ private static final int MIN_TRANSFER_STRIDE = 16;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The number of bits used for generation stamp in sizeCtl.
|
|
|
+ * Must be at least 6 for 32bit arrays.
|
|
|
+ */
|
|
|
+ private static int RESIZE_STAMP_BITS = 16;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The maximum number of threads that can help resize.
|
|
|
+ * Must fit in 32 - RESIZE_STAMP_BITS bits.
|
|
|
+ */
|
|
|
+ private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The bit shift for recording size stamp in sizeCtl.
|
|
|
+ */
|
|
|
+ private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Encodings for Node hash fields. See above for explanation.
|
|
|
+ */
|
|
|
+ static final int MOVED = -1; // hash for forwarding nodes
|
|
|
+ static final int TREEBIN = -2; // hash for roots of trees
|
|
|
+ static final int RESERVED = -3; // hash for transient reservations
|
|
|
+ static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
|
|
|
+
|
|
|
+ /** Number of CPUS, to place bounds on some sizings */
|
|
|
+ static final int NCPU = Runtime.getRuntime().availableProcessors();
|
|
|
+
|
|
|
+ /** For serialization compatibility. */
|
|
|
+ private static final ObjectStreamField[] serialPersistentFields = {
|
|
|
+ new ObjectStreamField("segments", Segment[].class),
|
|
|
+ new ObjectStreamField("segmentMask", Integer.TYPE),
|
|
|
+ new ObjectStreamField("segmentShift", Integer.TYPE)
|
|
|
+ };
|
|
|
+
|
|
|
+ /* ---------------- Nodes -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Key-value entry. This class is never exported out as a
|
|
|
+ * user-mutable Map.Entry (i.e., one supporting setValue; see
|
|
|
+ * MapEntry below), but can be used for read-only traversals used
|
|
|
+ * in bulk tasks. Subclasses of Node with a negative hash field
|
|
|
+ * are special, and contain null keys and values (but are never
|
|
|
+ * exported). Otherwise, keys and vals are never null.
|
|
|
+ */
|
|
|
+ static class Node<K,V> implements Entry<K,V> {
|
|
|
+ final int hash;
|
|
|
+ final K key;
|
|
|
+ volatile V val;
|
|
|
+ volatile Node<K,V> next;
|
|
|
+
|
|
|
+ Node(int hash, K key, V val, Node<K,V> next) {
|
|
|
+ this.hash = hash;
|
|
|
+ this.key = key;
|
|
|
+ this.val = val;
|
|
|
+ this.next = next;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final K getKey() { return key; }
|
|
|
+ public final V getValue() { return val; }
|
|
|
+ public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
|
|
|
+ public final String toString() { return key + "=" + val; }
|
|
|
+ public final V setValue(V value) {
|
|
|
+ throw new UnsupportedOperationException();
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean equals(Object o) {
|
|
|
+ Object k, v, u; Entry<?,?> e;
|
|
|
+ return ((o instanceof Map.Entry) &&
|
|
|
+ (k = (e = (Entry<?,?>)o).getKey()) != null &&
|
|
|
+ (v = e.getValue()) != null &&
|
|
|
+ (k == key || k.equals(key)) &&
|
|
|
+ (v == (u = val) || v.equals(u)));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Virtualized support for map.get(); overridden in subclasses.
|
|
|
+ */
|
|
|
+ Node<K,V> find(int h, Object k) {
|
|
|
+ Node<K,V> e = this;
|
|
|
+ if (k != null) {
|
|
|
+ do {
|
|
|
+ K ek;
|
|
|
+ if (e.hash == h &&
|
|
|
+ ((ek = e.key) == k || (ek != null && k.equals(ek))))
|
|
|
+ return e;
|
|
|
+ } while ((e = e.next) != null);
|
|
|
+ }
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- Static utilities -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Spreads (XORs) higher bits of hash to lower and also forces top
|
|
|
+ * bit to 0. Because the table uses power-of-two masking, sets of
|
|
|
+ * hashes that vary only in bits above the current mask will
|
|
|
+ * always collide. (Among known examples are sets of Float keys
|
|
|
+ * holding consecutive whole numbers in small tables.) So we
|
|
|
+ * apply a transform that spreads the impact of higher bits
|
|
|
+ * downward. There is a tradeoff between speed, utility, and
|
|
|
+ * quality of bit-spreading. Because many common sets of hashes
|
|
|
+ * are already reasonably distributed (so don't benefit from
|
|
|
+ * spreading), and because we use trees to handle large sets of
|
|
|
+ * collisions in bins, we just XOR some shifted bits in the
|
|
|
+ * cheapest possible way to reduce systematic lossage, as well as
|
|
|
+ * to incorporate impact of the highest bits that would otherwise
|
|
|
+ * never be used in index calculations because of table bounds.
|
|
|
+ */
|
|
|
+ static final int spread(int h) {
|
|
|
+ return (h ^ (h >>> 16)) & HASH_BITS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a power of two table size for the given desired capacity.
|
|
|
+ * See Hackers Delight, sec 3.2
|
|
|
+ */
|
|
|
+ private static final int tableSizeFor(int c) {
|
|
|
+ int n = c - 1;
|
|
|
+ n |= n >>> 1;
|
|
|
+ n |= n >>> 2;
|
|
|
+ n |= n >>> 4;
|
|
|
+ n |= n >>> 8;
|
|
|
+ n |= n >>> 16;
|
|
|
+ return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns x's Class if it is of the form "class C implements
|
|
|
+ * Comparable<C>", else null.
|
|
|
+ */
|
|
|
+ static Class<?> comparableClassFor(Object x) {
|
|
|
+ if (x instanceof Comparable) {
|
|
|
+ Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
|
|
|
+ if ((c = x.getClass()) == String.class) // bypass checks
|
|
|
+ return c;
|
|
|
+ if ((ts = c.getGenericInterfaces()) != null) {
|
|
|
+ for (int i = 0; i < ts.length; ++i) {
|
|
|
+ if (((t = ts[i]) instanceof ParameterizedType) &&
|
|
|
+ ((p = (ParameterizedType)t).getRawType() ==
|
|
|
+ Comparable.class) &&
|
|
|
+ (as = p.getActualTypeArguments()) != null &&
|
|
|
+ as.length == 1 && as[0] == c) // type arg is c
|
|
|
+ return c;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns k.compareTo(x) if x matches kc (k's screened comparable
|
|
|
+ * class), else 0.
|
|
|
+ */
|
|
|
+ @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
|
|
|
+ static int compareComparables(Class<?> kc, Object k, Object x) {
|
|
|
+ return (x == null || x.getClass() != kc ? 0 :
|
|
|
+ ((Comparable)k).compareTo(x));
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- Table element access -------------- */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Volatile access methods are used for table elements as well as
|
|
|
+ * elements of in-progress next table while resizing. All uses of
|
|
|
+ * the tab arguments must be null checked by callers. All callers
|
|
|
+ * also paranoically precheck that tab's length is not zero (or an
|
|
|
+ * equivalent check), thus ensuring that any index argument taking
|
|
|
+ * the form of a hash value anded with (length - 1) is a valid
|
|
|
+ * index. Note that, to be correct wrt arbitrary concurrency
|
|
|
+ * errors by users, these checks must operate on local variables,
|
|
|
+ * which accounts for some odd-looking inline assignments below.
|
|
|
+ * Note that calls to setTabAt always occur within locked regions,
|
|
|
+ * and so in principle require only release ordering, not
|
|
|
+ * full volatile semantics, but are currently coded as volatile
|
|
|
+ * writes to be conservative.
|
|
|
+ */
|
|
|
+
|
|
|
+ @SuppressWarnings("unchecked")
|
|
|
+ static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
|
|
|
+ return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
|
|
|
+ }
|
|
|
+
|
|
|
+ static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
|
|
|
+ Node<K,V> c, Node<K,V> v) {
|
|
|
+ return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
|
|
|
+ }
|
|
|
+
|
|
|
+ static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
|
|
|
+ U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- Fields -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The array of bins. Lazily initialized upon first insertion.
|
|
|
+ * Size is always a power of two. Accessed directly by iterators.
|
|
|
+ */
|
|
|
+ transient volatile Node<K,V>[] table;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The next table to use; non-null only while resizing.
|
|
|
+ */
|
|
|
+ private transient volatile Node<K,V>[] nextTable;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Base counter value, used mainly when there is no contention,
|
|
|
+ * but also as a fallback during table initialization
|
|
|
+ * races. Updated via CAS.
|
|
|
+ */
|
|
|
+ private transient volatile long baseCount;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Table initialization and resizing control. When negative, the
|
|
|
+ * table is being initialized or resized: -1 for initialization,
|
|
|
+ * else -(1 + the number of active resizing threads). Otherwise,
|
|
|
+ * when table is null, holds the initial table size to use upon
|
|
|
+ * creation, or 0 for default. After initialization, holds the
|
|
|
+ * next element count value upon which to resize the table.
|
|
|
+ */
|
|
|
+ private transient volatile int sizeCtl;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The next table index (plus one) to split while resizing.
|
|
|
+ */
|
|
|
+ private transient volatile int transferIndex;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
|
|
|
+ */
|
|
|
+ private transient volatile int cellsBusy;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Table of counter cells. When non-null, size is a power of 2.
|
|
|
+ */
|
|
|
+ private transient volatile CounterCell[] counterCells;
|
|
|
+
|
|
|
+ // views
|
|
|
+ private transient KeySetView<K,V> keySet;
|
|
|
+ private transient ValuesView<K,V> values;
|
|
|
+ private transient EntrySetView<K,V> entrySet;
|
|
|
+
|
|
|
+
|
|
|
+ /* ---------------- Public operations -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a new, empty map with the default initial table size (16).
|
|
|
+ */
|
|
|
+ public ConcurrentHashMapV8() {
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a new, empty map with an initial table size
|
|
|
+ * accommodating the specified number of elements without the need
|
|
|
+ * to dynamically resize.
|
|
|
+ *
|
|
|
+ * @param initialCapacity The implementation performs internal
|
|
|
+ * sizing to accommodate this many elements.
|
|
|
+ * @throws IllegalArgumentException if the initial capacity of
|
|
|
+ * elements is negative
|
|
|
+ */
|
|
|
+ public ConcurrentHashMapV8(int initialCapacity) {
|
|
|
+ if (initialCapacity < 0)
|
|
|
+ throw new IllegalArgumentException();
|
|
|
+ int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
|
|
|
+ MAXIMUM_CAPACITY :
|
|
|
+ tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
|
|
|
+ this.sizeCtl = cap;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a new map with the same mappings as the given map.
|
|
|
+ *
|
|
|
+ * @param m the map
|
|
|
+ */
|
|
|
+ public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
|
|
|
+ this.sizeCtl = DEFAULT_CAPACITY;
|
|
|
+ putAll(m);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a new, empty map with an initial table size based on
|
|
|
+ * the given number of elements ({@code initialCapacity}) and
|
|
|
+ * initial table density ({@code loadFactor}).
|
|
|
+ *
|
|
|
+ * @param initialCapacity the initial capacity. The implementation
|
|
|
+ * performs internal sizing to accommodate this many elements,
|
|
|
+ * given the specified load factor.
|
|
|
+ * @param loadFactor the load factor (table density) for
|
|
|
+ * establishing the initial table size
|
|
|
+ * @throws IllegalArgumentException if the initial capacity of
|
|
|
+ * elements is negative or the load factor is nonpositive
|
|
|
+ *
|
|
|
+ * @since 1.6
|
|
|
+ */
|
|
|
+ public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
|
|
|
+ this(initialCapacity, loadFactor, 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a new, empty map with an initial table size based on
|
|
|
+ * the given number of elements ({@code initialCapacity}), table
|
|
|
+ * density ({@code loadFactor}), and number of concurrently
|
|
|
+ * updating threads ({@code concurrencyLevel}).
|
|
|
+ *
|
|
|
+ * @param initialCapacity the initial capacity. The implementation
|
|
|
+ * performs internal sizing to accommodate this many elements,
|
|
|
+ * given the specified load factor.
|
|
|
+ * @param loadFactor the load factor (table density) for
|
|
|
+ * establishing the initial table size
|
|
|
+ * @param concurrencyLevel the estimated number of concurrently
|
|
|
+ * updating threads. The implementation may use this value as
|
|
|
+ * a sizing hint.
|
|
|
+ * @throws IllegalArgumentException if the initial capacity is
|
|
|
+ * negative or the load factor or concurrencyLevel are
|
|
|
+ * nonpositive
|
|
|
+ */
|
|
|
+ public ConcurrentHashMapV8(int initialCapacity,
|
|
|
+ float loadFactor, int concurrencyLevel) {
|
|
|
+ if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
|
|
|
+ throw new IllegalArgumentException();
|
|
|
+ if (initialCapacity < concurrencyLevel) // Use at least as many bins
|
|
|
+ initialCapacity = concurrencyLevel; // as estimated threads
|
|
|
+ long size = (long)(1.0 + (long)initialCapacity / loadFactor);
|
|
|
+ int cap = (size >= (long)MAXIMUM_CAPACITY) ?
|
|
|
+ MAXIMUM_CAPACITY : tableSizeFor((int)size);
|
|
|
+ this.sizeCtl = cap;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Original (since JDK1.2) Map methods
|
|
|
+
|
|
|
+ /**
|
|
|
+ * {@inheritDoc}
|
|
|
+ */
|
|
|
+ public int size() {
|
|
|
+ long n = sumCount();
|
|
|
+ return ((n < 0L) ? 0 :
|
|
|
+ (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
|
|
|
+ (int)n);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * {@inheritDoc}
|
|
|
+ */
|
|
|
+ public boolean isEmpty() {
|
|
|
+ return sumCount() <= 0L; // ignore transient negative values
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the value to which the specified key is mapped,
|
|
|
+ * or {@code null} if this map contains no mapping for the key.
|
|
|
+ *
|
|
|
+ * <p>More formally, if this map contains a mapping from a key
|
|
|
+ * {@code k} to a value {@code v} such that {@code key.equals(k)},
|
|
|
+ * then this method returns {@code v}; otherwise it returns
|
|
|
+ * {@code null}. (There can be at most one such mapping.)
|
|
|
+ *
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ */
|
|
|
+ public V get(Object key) {
|
|
|
+ Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
|
|
|
+ int h = spread(key.hashCode());
|
|
|
+ if ((tab = table) != null && (n = tab.length) > 0 &&
|
|
|
+ (e = tabAt(tab, (n - 1) & h)) != null) {
|
|
|
+ if ((eh = e.hash) == h) {
|
|
|
+ if ((ek = e.key) == key || (ek != null && key.equals(ek)))
|
|
|
+ return e.val;
|
|
|
+ }
|
|
|
+ else if (eh < 0)
|
|
|
+ return (p = e.find(h, key)) != null ? p.val : null;
|
|
|
+ while ((e = e.next) != null) {
|
|
|
+ if (e.hash == h &&
|
|
|
+ ((ek = e.key) == key || (ek != null && key.equals(ek))))
|
|
|
+ return e.val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Tests if the specified object is a key in this table.
|
|
|
+ *
|
|
|
+ * @param key possible key
|
|
|
+ * @return {@code true} if and only if the specified object
|
|
|
+ * is a key in this table, as determined by the
|
|
|
+ * {@code equals} method; {@code false} otherwise
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ */
|
|
|
+ public boolean containsKey(Object key) {
|
|
|
+ return get(key) != null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns {@code true} if this map maps one or more keys to the
|
|
|
+ * specified value. Note: This method may require a full traversal
|
|
|
+ * of the map, and is much slower than method {@code containsKey}.
|
|
|
+ *
|
|
|
+ * @param value value whose presence in this map is to be tested
|
|
|
+ * @return {@code true} if this map maps one or more keys to the
|
|
|
+ * specified value
|
|
|
+ * @throws NullPointerException if the specified value is null
|
|
|
+ */
|
|
|
+ public boolean containsValue(Object value) {
|
|
|
+ if (value == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; ) {
|
|
|
+ V v;
|
|
|
+ if ((v = p.val) == value || (v != null && value.equals(v)))
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Maps the specified key to the specified value in this table.
|
|
|
+ * Neither the key nor the value can be null.
|
|
|
+ *
|
|
|
+ * <p>The value can be retrieved by calling the {@code get} method
|
|
|
+ * with a key that is equal to the original key.
|
|
|
+ *
|
|
|
+ * @param key key with which the specified value is to be associated
|
|
|
+ * @param value value to be associated with the specified key
|
|
|
+ * @return the previous value associated with {@code key}, or
|
|
|
+ * {@code null} if there was no mapping for {@code key}
|
|
|
+ * @throws NullPointerException if the specified key or value is null
|
|
|
+ */
|
|
|
+ public V put(K key, V value) {
|
|
|
+ return putVal(key, value, false);
|
|
|
+ }
|
|
|
+
|
|
|
+ /** Implementation for put and putIfAbsent */
|
|
|
+ final V putVal(K key, V value, boolean onlyIfAbsent) {
|
|
|
+ if (key == null || value == null) throw new NullPointerException();
|
|
|
+ int hash = spread(key.hashCode());
|
|
|
+ int binCount = 0;
|
|
|
+ for (Node<K,V>[] tab = table;;) {
|
|
|
+ Node<K,V> f; int n, i, fh;
|
|
|
+ if (tab == null || (n = tab.length) == 0)
|
|
|
+ tab = initTable();
|
|
|
+ else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
|
|
|
+ if (casTabAt(tab, i, null,
|
|
|
+ new Node<K,V>(hash, key, value, null)))
|
|
|
+ break; // no lock when adding to empty bin
|
|
|
+ }
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ else {
|
|
|
+ V oldVal = null;
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ if (fh >= 0) {
|
|
|
+ binCount = 1;
|
|
|
+ for (Node<K,V> e = f;; ++binCount) {
|
|
|
+ K ek;
|
|
|
+ if (e.hash == hash &&
|
|
|
+ ((ek = e.key) == key ||
|
|
|
+ (ek != null && key.equals(ek)))) {
|
|
|
+ oldVal = e.val;
|
|
|
+ if (!onlyIfAbsent)
|
|
|
+ e.val = value;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ Node<K,V> pred = e;
|
|
|
+ if ((e = e.next) == null) {
|
|
|
+ pred.next = new Node<K,V>(hash, key,
|
|
|
+ value, null);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (f instanceof TreeBin) {
|
|
|
+ Node<K,V> p;
|
|
|
+ binCount = 2;
|
|
|
+ if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
|
|
|
+ value)) != null) {
|
|
|
+ oldVal = p.val;
|
|
|
+ if (!onlyIfAbsent)
|
|
|
+ p.val = value;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0) {
|
|
|
+ if (binCount >= TREEIFY_THRESHOLD)
|
|
|
+ treeifyBin(tab, i);
|
|
|
+ if (oldVal != null)
|
|
|
+ return oldVal;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ addCount(1L, binCount);
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Copies all of the mappings from the specified map to this one.
|
|
|
+ * These mappings replace any mappings that this map had for any of the
|
|
|
+ * keys currently in the specified map.
|
|
|
+ *
|
|
|
+ * @param m mappings to be stored in this map
|
|
|
+ */
|
|
|
+ public void putAll(Map<? extends K, ? extends V> m) {
|
|
|
+ tryPresize(m.size());
|
|
|
+ for (Entry<? extends K, ? extends V> e : m.entrySet())
|
|
|
+ putVal(e.getKey(), e.getValue(), false);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Removes the key (and its corresponding value) from this map.
|
|
|
+ * This method does nothing if the key is not in the map.
|
|
|
+ *
|
|
|
+ * @param key the key that needs to be removed
|
|
|
+ * @return the previous value associated with {@code key}, or
|
|
|
+ * {@code null} if there was no mapping for {@code key}
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ */
|
|
|
+ public V remove(Object key) {
|
|
|
+ return replaceNode(key, null, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Implementation for the four public remove/replace methods:
|
|
|
+ * Replaces node value with v, conditional upon match of cv if
|
|
|
+ * non-null. If resulting value is null, delete.
|
|
|
+ */
|
|
|
+ final V replaceNode(Object key, V value, Object cv) {
|
|
|
+ int hash = spread(key.hashCode());
|
|
|
+ for (Node<K,V>[] tab = table;;) {
|
|
|
+ Node<K,V> f; int n, i, fh;
|
|
|
+ if (tab == null || (n = tab.length) == 0 ||
|
|
|
+ (f = tabAt(tab, i = (n - 1) & hash)) == null)
|
|
|
+ break;
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ else {
|
|
|
+ V oldVal = null;
|
|
|
+ boolean validated = false;
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ if (fh >= 0) {
|
|
|
+ validated = true;
|
|
|
+ for (Node<K,V> e = f, pred = null;;) {
|
|
|
+ K ek;
|
|
|
+ if (e.hash == hash &&
|
|
|
+ ((ek = e.key) == key ||
|
|
|
+ (ek != null && key.equals(ek)))) {
|
|
|
+ V ev = e.val;
|
|
|
+ if (cv == null || cv == ev ||
|
|
|
+ (ev != null && cv.equals(ev))) {
|
|
|
+ oldVal = ev;
|
|
|
+ if (value != null)
|
|
|
+ e.val = value;
|
|
|
+ else if (pred != null)
|
|
|
+ pred.next = e.next;
|
|
|
+ else
|
|
|
+ setTabAt(tab, i, e.next);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ pred = e;
|
|
|
+ if ((e = e.next) == null)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (f instanceof TreeBin) {
|
|
|
+ validated = true;
|
|
|
+ TreeBin<K,V> t = (TreeBin<K,V>)f;
|
|
|
+ TreeNode<K,V> r, p;
|
|
|
+ if ((r = t.root) != null &&
|
|
|
+ (p = r.findTreeNode(hash, key, null)) != null) {
|
|
|
+ V pv = p.val;
|
|
|
+ if (cv == null || cv == pv ||
|
|
|
+ (pv != null && cv.equals(pv))) {
|
|
|
+ oldVal = pv;
|
|
|
+ if (value != null)
|
|
|
+ p.val = value;
|
|
|
+ else if (t.removeTreeNode(p))
|
|
|
+ setTabAt(tab, i, untreeify(t.first));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (validated) {
|
|
|
+ if (oldVal != null) {
|
|
|
+ if (value == null)
|
|
|
+ addCount(-1L, -1);
|
|
|
+ return oldVal;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Removes all of the mappings from this map.
|
|
|
+ */
|
|
|
+ public void clear() {
|
|
|
+ long delta = 0L; // negative number of deletions
|
|
|
+ int i = 0;
|
|
|
+ Node<K,V>[] tab = table;
|
|
|
+ while (tab != null && i < tab.length) {
|
|
|
+ int fh;
|
|
|
+ Node<K,V> f = tabAt(tab, i);
|
|
|
+ if (f == null)
|
|
|
+ ++i;
|
|
|
+ else if ((fh = f.hash) == MOVED) {
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ i = 0; // restart
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ Node<K,V> p = (fh >= 0 ? f :
|
|
|
+ (f instanceof TreeBin) ?
|
|
|
+ ((TreeBin<K,V>)f).first : null);
|
|
|
+ while (p != null) {
|
|
|
+ --delta;
|
|
|
+ p = p.next;
|
|
|
+ }
|
|
|
+ setTabAt(tab, i++, null);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (delta != 0L)
|
|
|
+ addCount(delta, -1);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a {@link Set} view of the keys contained in this map.
|
|
|
+ * The set is backed by the map, so changes to the map are
|
|
|
+ * reflected in the set, and vice-versa. The set supports element
|
|
|
+ * removal, which removes the corresponding mapping from this map,
|
|
|
+ * via the {@code Iterator.remove}, {@code Set.remove},
|
|
|
+ * {@code removeAll}, {@code retainAll}, and {@code clear}
|
|
|
+ * operations. It does not support the {@code add} or
|
|
|
+ * {@code addAll} operations.
|
|
|
+ *
|
|
|
+ * <p>The view's {@code iterator} is a "weakly consistent" iterator
|
|
|
+ * that will never throw {@link ConcurrentModificationException},
|
|
|
+ * and guarantees to traverse elements as they existed upon
|
|
|
+ * construction of the iterator, and may (but is not guaranteed to)
|
|
|
+ * reflect any modifications subsequent to construction.
|
|
|
+ *
|
|
|
+ * @return the set view
|
|
|
+ */
|
|
|
+ public KeySetView<K,V> keySet() {
|
|
|
+ KeySetView<K,V> ks;
|
|
|
+ return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a {@link Collection} view of the values contained in this map.
|
|
|
+ * The collection is backed by the map, so changes to the map are
|
|
|
+ * reflected in the collection, and vice-versa. The collection
|
|
|
+ * supports element removal, which removes the corresponding
|
|
|
+ * mapping from this map, via the {@code Iterator.remove},
|
|
|
+ * {@code Collection.remove}, {@code removeAll},
|
|
|
+ * {@code retainAll}, and {@code clear} operations. It does not
|
|
|
+ * support the {@code add} or {@code addAll} operations.
|
|
|
+ *
|
|
|
+ * <p>The view's {@code iterator} is a "weakly consistent" iterator
|
|
|
+ * that will never throw {@link ConcurrentModificationException},
|
|
|
+ * and guarantees to traverse elements as they existed upon
|
|
|
+ * construction of the iterator, and may (but is not guaranteed to)
|
|
|
+ * reflect any modifications subsequent to construction.
|
|
|
+ *
|
|
|
+ * @return the collection view
|
|
|
+ */
|
|
|
+ public Collection<V> values() {
|
|
|
+ ValuesView<K,V> vs;
|
|
|
+ return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a {@link Set} view of the mappings contained in this map.
|
|
|
+ * The set is backed by the map, so changes to the map are
|
|
|
+ * reflected in the set, and vice-versa. The set supports element
|
|
|
+ * removal, which removes the corresponding mapping from the map,
|
|
|
+ * via the {@code Iterator.remove}, {@code Set.remove},
|
|
|
+ * {@code removeAll}, {@code retainAll}, and {@code clear}
|
|
|
+ * operations.
|
|
|
+ *
|
|
|
+ * <p>The view's {@code iterator} is a "weakly consistent" iterator
|
|
|
+ * that will never throw {@link ConcurrentModificationException},
|
|
|
+ * and guarantees to traverse elements as they existed upon
|
|
|
+ * construction of the iterator, and may (but is not guaranteed to)
|
|
|
+ * reflect any modifications subsequent to construction.
|
|
|
+ *
|
|
|
+ * @return the set view
|
|
|
+ */
|
|
|
+ public Set<Entry<K,V>> entrySet() {
|
|
|
+ EntrySetView<K,V> es;
|
|
|
+ return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the hash code value for this {@link Map}, i.e.,
|
|
|
+ * the sum of, for each key-value pair in the map,
|
|
|
+ * {@code key.hashCode() ^ value.hashCode()}.
|
|
|
+ *
|
|
|
+ * @return the hash code value for this map
|
|
|
+ */
|
|
|
+ public int hashCode() {
|
|
|
+ int h = 0;
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; )
|
|
|
+ h += p.key.hashCode() ^ p.val.hashCode();
|
|
|
+ }
|
|
|
+ return h;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a string representation of this map. The string
|
|
|
+ * representation consists of a list of key-value mappings (in no
|
|
|
+ * particular order) enclosed in braces ("{@code {}}"). Adjacent
|
|
|
+ * mappings are separated by the characters {@code ", "} (comma
|
|
|
+ * and space). Each key-value mapping is rendered as the key
|
|
|
+ * followed by an equals sign ("{@code =}") followed by the
|
|
|
+ * associated value.
|
|
|
+ *
|
|
|
+ * @return a string representation of this map
|
|
|
+ */
|
|
|
+ public String toString() {
|
|
|
+ Node<K,V>[] t;
|
|
|
+ int f = (t = table) == null ? 0 : t.length;
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
|
|
|
+ StringBuilder sb = new StringBuilder();
|
|
|
+ sb.append('{');
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = it.advance()) != null) {
|
|
|
+ for (;;) {
|
|
|
+ K k = p.key;
|
|
|
+ V v = p.val;
|
|
|
+ sb.append(k == this ? "(this Map)" : k);
|
|
|
+ sb.append('=');
|
|
|
+ sb.append(v == this ? "(this Map)" : v);
|
|
|
+ if ((p = it.advance()) == null)
|
|
|
+ break;
|
|
|
+ sb.append(',').append(' ');
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return sb.append('}').toString();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Compares the specified object with this map for equality.
|
|
|
+ * Returns {@code true} if the given object is a map with the same
|
|
|
+ * mappings as this map. This operation may return misleading
|
|
|
+ * results if either map is concurrently modified during execution
|
|
|
+ * of this method.
|
|
|
+ *
|
|
|
+ * @param o object to be compared for equality with this map
|
|
|
+ * @return {@code true} if the specified object is equal to this map
|
|
|
+ */
|
|
|
+ public boolean equals(Object o) {
|
|
|
+ if (o != this) {
|
|
|
+ if (!(o instanceof Map))
|
|
|
+ return false;
|
|
|
+ Map<?,?> m = (Map<?,?>) o;
|
|
|
+ Node<K,V>[] t;
|
|
|
+ int f = (t = table) == null ? 0 : t.length;
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; ) {
|
|
|
+ V val = p.val;
|
|
|
+ Object v = m.get(p.key);
|
|
|
+ if (v == null || (v != val && !v.equals(val)))
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ for (Entry<?,?> e : m.entrySet()) {
|
|
|
+ Object mk, mv, v;
|
|
|
+ if ((mk = e.getKey()) == null ||
|
|
|
+ (mv = e.getValue()) == null ||
|
|
|
+ (v = get(mk)) == null ||
|
|
|
+ (mv != v && !mv.equals(v)))
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Stripped-down version of helper class used in previous version,
|
|
|
+ * declared for the sake of serialization compatibility
|
|
|
+ */
|
|
|
+ static class Segment<K,V> extends ReentrantLock implements Serializable {
|
|
|
+ private static final long serialVersionUID = 2249069246763182397L;
|
|
|
+ final float loadFactor;
|
|
|
+ Segment(float lf) { this.loadFactor = lf; }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Saves the state of the {@code ConcurrentHashMapV8} instance to a
|
|
|
+ * stream (i.e., serializes it).
|
|
|
+ * @param s the stream
|
|
|
+ * @throws java.io.IOException if an I/O error occurs
|
|
|
+ * @serialData
|
|
|
+ * the key (Object) and value (Object)
|
|
|
+ * for each key-value mapping, followed by a null pair.
|
|
|
+ * The key-value mappings are emitted in no particular order.
|
|
|
+ */
|
|
|
+ private void writeObject(java.io.ObjectOutputStream s)
|
|
|
+ throws java.io.IOException {
|
|
|
+ // For serialization compatibility
|
|
|
+ // Emulate segment calculation from previous version of this class
|
|
|
+ int sshift = 0;
|
|
|
+ int ssize = 1;
|
|
|
+ while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
|
|
|
+ ++sshift;
|
|
|
+ ssize <<= 1;
|
|
|
+ }
|
|
|
+ int segmentShift = 32 - sshift;
|
|
|
+ int segmentMask = ssize - 1;
|
|
|
+ @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
|
|
|
+ new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
|
|
|
+ for (int i = 0; i < segments.length; ++i)
|
|
|
+ segments[i] = new Segment<K,V>(LOAD_FACTOR);
|
|
|
+ s.putFields().put("segments", segments);
|
|
|
+ s.putFields().put("segmentShift", segmentShift);
|
|
|
+ s.putFields().put("segmentMask", segmentMask);
|
|
|
+ s.writeFields();
|
|
|
+
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; ) {
|
|
|
+ s.writeObject(p.key);
|
|
|
+ s.writeObject(p.val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ s.writeObject(null);
|
|
|
+ s.writeObject(null);
|
|
|
+ segments = null; // throw away
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Reconstitutes the instance from a stream (that is, deserializes it).
|
|
|
+ * @param s the stream
|
|
|
+ * @throws ClassNotFoundException if the class of a serialized object
|
|
|
+ * could not be found
|
|
|
+ * @throws java.io.IOException if an I/O error occurs
|
|
|
+ */
|
|
|
+ private void readObject(java.io.ObjectInputStream s)
|
|
|
+ throws java.io.IOException, ClassNotFoundException {
|
|
|
+ /*
|
|
|
+ * To improve performance in typical cases, we create nodes
|
|
|
+ * while reading, then place in table once size is known.
|
|
|
+ * However, we must also validate uniqueness and deal with
|
|
|
+ * overpopulated bins while doing so, which requires
|
|
|
+ * specialized versions of putVal mechanics.
|
|
|
+ */
|
|
|
+ sizeCtl = -1; // force exclusion for table construction
|
|
|
+ s.defaultReadObject();
|
|
|
+ long size = 0L;
|
|
|
+ Node<K,V> p = null;
|
|
|
+ for (;;) {
|
|
|
+ @SuppressWarnings("unchecked") K k = (K) s.readObject();
|
|
|
+ @SuppressWarnings("unchecked") V v = (V) s.readObject();
|
|
|
+ if (k != null && v != null) {
|
|
|
+ p = new Node<K,V>(spread(k.hashCode()), k, v, p);
|
|
|
+ ++size;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (size == 0L)
|
|
|
+ sizeCtl = 0;
|
|
|
+ else {
|
|
|
+ int n;
|
|
|
+ if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
|
|
|
+ n = MAXIMUM_CAPACITY;
|
|
|
+ else {
|
|
|
+ int sz = (int)size;
|
|
|
+ n = tableSizeFor(sz + (sz >>> 1) + 1);
|
|
|
+ }
|
|
|
+ @SuppressWarnings("unchecked")
|
|
|
+ Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
|
|
|
+ int mask = n - 1;
|
|
|
+ long added = 0L;
|
|
|
+ while (p != null) {
|
|
|
+ boolean insertAtFront;
|
|
|
+ Node<K,V> next = p.next, first;
|
|
|
+ int h = p.hash, j = h & mask;
|
|
|
+ if ((first = tabAt(tab, j)) == null)
|
|
|
+ insertAtFront = true;
|
|
|
+ else {
|
|
|
+ K k = p.key;
|
|
|
+ if (first.hash < 0) {
|
|
|
+ TreeBin<K,V> t = (TreeBin<K,V>)first;
|
|
|
+ if (t.putTreeVal(h, k, p.val) == null)
|
|
|
+ ++added;
|
|
|
+ insertAtFront = false;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ int binCount = 0;
|
|
|
+ insertAtFront = true;
|
|
|
+ Node<K,V> q; K qk;
|
|
|
+ for (q = first; q != null; q = q.next) {
|
|
|
+ if (q.hash == h &&
|
|
|
+ ((qk = q.key) == k ||
|
|
|
+ (qk != null && k.equals(qk)))) {
|
|
|
+ insertAtFront = false;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ++binCount;
|
|
|
+ }
|
|
|
+ if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
|
|
|
+ insertAtFront = false;
|
|
|
+ ++added;
|
|
|
+ p.next = first;
|
|
|
+ TreeNode<K,V> hd = null, tl = null;
|
|
|
+ for (q = p; q != null; q = q.next) {
|
|
|
+ TreeNode<K,V> t = new TreeNode<K,V>
|
|
|
+ (q.hash, q.key, q.val, null, null);
|
|
|
+ if ((t.prev = tl) == null)
|
|
|
+ hd = t;
|
|
|
+ else
|
|
|
+ tl.next = t;
|
|
|
+ tl = t;
|
|
|
+ }
|
|
|
+ setTabAt(tab, j, new TreeBin<K,V>(hd));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (insertAtFront) {
|
|
|
+ ++added;
|
|
|
+ p.next = first;
|
|
|
+ setTabAt(tab, j, p);
|
|
|
+ }
|
|
|
+ p = next;
|
|
|
+ }
|
|
|
+ table = tab;
|
|
|
+ sizeCtl = n - (n >>> 2);
|
|
|
+ baseCount = added;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // ConcurrentMap methods
|
|
|
+
|
|
|
+ /**
|
|
|
+ * {@inheritDoc}
|
|
|
+ *
|
|
|
+ * @return the previous value associated with the specified key,
|
|
|
+ * or {@code null} if there was no mapping for the key
|
|
|
+ * @throws NullPointerException if the specified key or value is null
|
|
|
+ */
|
|
|
+ public V putIfAbsent(K key, V value) {
|
|
|
+ return putVal(key, value, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * {@inheritDoc}
|
|
|
+ *
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ */
|
|
|
+ public boolean remove(Object key, Object value) {
|
|
|
+ if (key == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return value != null && replaceNode(key, null, value) != null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * {@inheritDoc}
|
|
|
+ *
|
|
|
+ * @throws NullPointerException if any of the arguments are null
|
|
|
+ */
|
|
|
+ public boolean replace(K key, V oldValue, V newValue) {
|
|
|
+ if (key == null || oldValue == null || newValue == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return replaceNode(key, newValue, oldValue) != null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * {@inheritDoc}
|
|
|
+ *
|
|
|
+ * @return the previous value associated with the specified key,
|
|
|
+ * or {@code null} if there was no mapping for the key
|
|
|
+ * @throws NullPointerException if the specified key or value is null
|
|
|
+ */
|
|
|
+ public V replace(K key, V value) {
|
|
|
+ if (key == null || value == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return replaceNode(key, value, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Overrides of JDK8+ Map extension method defaults
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the value to which the specified key is mapped, or the
|
|
|
+ * given default value if this map contains no mapping for the
|
|
|
+ * key.
|
|
|
+ *
|
|
|
+ * @param key the key whose associated value is to be returned
|
|
|
+ * @param defaultValue the value to return if this map contains
|
|
|
+ * no mapping for the given key
|
|
|
+ * @return the mapping for the key, if present; else the default value
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ */
|
|
|
+ public V getOrDefault(Object key, V defaultValue) {
|
|
|
+ V v;
|
|
|
+ return (v = get(key)) == null ? defaultValue : v;
|
|
|
+ }
|
|
|
+
|
|
|
+ public void forEach(BiAction<? super K, ? super V> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; ) {
|
|
|
+ action.apply(p.key, p.val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
|
|
|
+ if (function == null) throw new NullPointerException();
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; ) {
|
|
|
+ V oldValue = p.val;
|
|
|
+ for (K key = p.key;;) {
|
|
|
+ V newValue = function.apply(key, oldValue);
|
|
|
+ if (newValue == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ if (replaceNode(key, newValue, oldValue) != null ||
|
|
|
+ (oldValue = get(key)) == null)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * If the specified key is not already associated with a value,
|
|
|
+ * attempts to compute its value using the given mapping function
|
|
|
+ * and enters it into this map unless {@code null}. The entire
|
|
|
+ * method invocation is performed atomically, so the function is
|
|
|
+ * applied at most once per key. Some attempted update operations
|
|
|
+ * on this map by other threads may be blocked while computation
|
|
|
+ * is in progress, so the computation should be short and simple,
|
|
|
+ * and must not attempt to update any other mappings of this map.
|
|
|
+ *
|
|
|
+ * @param key key with which the specified value is to be associated
|
|
|
+ * @param mappingFunction the function to compute a value
|
|
|
+ * @return the current (existing or computed) value associated with
|
|
|
+ * the specified key, or null if the computed value is null
|
|
|
+ * @throws NullPointerException if the specified key or mappingFunction
|
|
|
+ * is null
|
|
|
+ * @throws IllegalStateException if the computation detectably
|
|
|
+ * attempts a recursive update to this map that would
|
|
|
+ * otherwise never complete
|
|
|
+ * @throws RuntimeException or Error if the mappingFunction does so,
|
|
|
+ * in which case the mapping is left unestablished
|
|
|
+ */
|
|
|
+ public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
|
|
|
+ if (key == null || mappingFunction == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ int h = spread(key.hashCode());
|
|
|
+ V val = null;
|
|
|
+ int binCount = 0;
|
|
|
+ for (Node<K,V>[] tab = table;;) {
|
|
|
+ Node<K,V> f; int n, i, fh;
|
|
|
+ if (tab == null || (n = tab.length) == 0)
|
|
|
+ tab = initTable();
|
|
|
+ else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
|
|
|
+ Node<K,V> r = new ReservationNode<K,V>();
|
|
|
+ synchronized (r) {
|
|
|
+ if (casTabAt(tab, i, null, r)) {
|
|
|
+ binCount = 1;
|
|
|
+ Node<K,V> node = null;
|
|
|
+ try {
|
|
|
+ if ((val = mappingFunction.apply(key)) != null)
|
|
|
+ node = new Node<K,V>(h, key, val, null);
|
|
|
+ } finally {
|
|
|
+ setTabAt(tab, i, node);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ else {
|
|
|
+ boolean added = false;
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ if (fh >= 0) {
|
|
|
+ binCount = 1;
|
|
|
+ for (Node<K,V> e = f;; ++binCount) {
|
|
|
+ K ek; V ev;
|
|
|
+ if (e.hash == h &&
|
|
|
+ ((ek = e.key) == key ||
|
|
|
+ (ek != null && key.equals(ek)))) {
|
|
|
+ val = e.val;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ Node<K,V> pred = e;
|
|
|
+ if ((e = e.next) == null) {
|
|
|
+ if ((val = mappingFunction.apply(key)) != null) {
|
|
|
+ added = true;
|
|
|
+ pred.next = new Node<K,V>(h, key, val, null);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (f instanceof TreeBin) {
|
|
|
+ binCount = 2;
|
|
|
+ TreeBin<K,V> t = (TreeBin<K,V>)f;
|
|
|
+ TreeNode<K,V> r, p;
|
|
|
+ if ((r = t.root) != null &&
|
|
|
+ (p = r.findTreeNode(h, key, null)) != null)
|
|
|
+ val = p.val;
|
|
|
+ else if ((val = mappingFunction.apply(key)) != null) {
|
|
|
+ added = true;
|
|
|
+ t.putTreeVal(h, key, val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0) {
|
|
|
+ if (binCount >= TREEIFY_THRESHOLD)
|
|
|
+ treeifyBin(tab, i);
|
|
|
+ if (!added)
|
|
|
+ return val;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (val != null)
|
|
|
+ addCount(1L, binCount);
|
|
|
+ return val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * If the value for the specified key is present, attempts to
|
|
|
+ * compute a new mapping given the key and its current mapped
|
|
|
+ * value. The entire method invocation is performed atomically.
|
|
|
+ * Some attempted update operations on this map by other threads
|
|
|
+ * may be blocked while computation is in progress, so the
|
|
|
+ * computation should be short and simple, and must not attempt to
|
|
|
+ * update any other mappings of this map.
|
|
|
+ *
|
|
|
+ * @param key key with which a value may be associated
|
|
|
+ * @param remappingFunction the function to compute a value
|
|
|
+ * @return the new value associated with the specified key, or null if none
|
|
|
+ * @throws NullPointerException if the specified key or remappingFunction
|
|
|
+ * is null
|
|
|
+ * @throws IllegalStateException if the computation detectably
|
|
|
+ * attempts a recursive update to this map that would
|
|
|
+ * otherwise never complete
|
|
|
+ * @throws RuntimeException or Error if the remappingFunction does so,
|
|
|
+ * in which case the mapping is unchanged
|
|
|
+ */
|
|
|
+ public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
|
|
|
+ if (key == null || remappingFunction == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ int h = spread(key.hashCode());
|
|
|
+ V val = null;
|
|
|
+ int delta = 0;
|
|
|
+ int binCount = 0;
|
|
|
+ for (Node<K,V>[] tab = table;;) {
|
|
|
+ Node<K,V> f; int n, i, fh;
|
|
|
+ if (tab == null || (n = tab.length) == 0)
|
|
|
+ tab = initTable();
|
|
|
+ else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
|
|
|
+ break;
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ else {
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ if (fh >= 0) {
|
|
|
+ binCount = 1;
|
|
|
+ for (Node<K,V> e = f, pred = null;; ++binCount) {
|
|
|
+ K ek;
|
|
|
+ if (e.hash == h &&
|
|
|
+ ((ek = e.key) == key ||
|
|
|
+ (ek != null && key.equals(ek)))) {
|
|
|
+ val = remappingFunction.apply(key, e.val);
|
|
|
+ if (val != null)
|
|
|
+ e.val = val;
|
|
|
+ else {
|
|
|
+ delta = -1;
|
|
|
+ Node<K,V> en = e.next;
|
|
|
+ if (pred != null)
|
|
|
+ pred.next = en;
|
|
|
+ else
|
|
|
+ setTabAt(tab, i, en);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ pred = e;
|
|
|
+ if ((e = e.next) == null)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (f instanceof TreeBin) {
|
|
|
+ binCount = 2;
|
|
|
+ TreeBin<K,V> t = (TreeBin<K,V>)f;
|
|
|
+ TreeNode<K,V> r, p;
|
|
|
+ if ((r = t.root) != null &&
|
|
|
+ (p = r.findTreeNode(h, key, null)) != null) {
|
|
|
+ val = remappingFunction.apply(key, p.val);
|
|
|
+ if (val != null)
|
|
|
+ p.val = val;
|
|
|
+ else {
|
|
|
+ delta = -1;
|
|
|
+ if (t.removeTreeNode(p))
|
|
|
+ setTabAt(tab, i, untreeify(t.first));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (delta != 0)
|
|
|
+ addCount((long)delta, binCount);
|
|
|
+ return val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Attempts to compute a mapping for the specified key and its
|
|
|
+ * current mapped value (or {@code null} if there is no current
|
|
|
+ * mapping). The entire method invocation is performed atomically.
|
|
|
+ * Some attempted update operations on this map by other threads
|
|
|
+ * may be blocked while computation is in progress, so the
|
|
|
+ * computation should be short and simple, and must not attempt to
|
|
|
+ * update any other mappings of this Map.
|
|
|
+ *
|
|
|
+ * @param key key with which the specified value is to be associated
|
|
|
+ * @param remappingFunction the function to compute a value
|
|
|
+ * @return the new value associated with the specified key, or null if none
|
|
|
+ * @throws NullPointerException if the specified key or remappingFunction
|
|
|
+ * is null
|
|
|
+ * @throws IllegalStateException if the computation detectably
|
|
|
+ * attempts a recursive update to this map that would
|
|
|
+ * otherwise never complete
|
|
|
+ * @throws RuntimeException or Error if the remappingFunction does so,
|
|
|
+ * in which case the mapping is unchanged
|
|
|
+ */
|
|
|
+ public V compute(K key,
|
|
|
+ BiFun<? super K, ? super V, ? extends V> remappingFunction) {
|
|
|
+ if (key == null || remappingFunction == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ int h = spread(key.hashCode());
|
|
|
+ V val = null;
|
|
|
+ int delta = 0;
|
|
|
+ int binCount = 0;
|
|
|
+ for (Node<K,V>[] tab = table;;) {
|
|
|
+ Node<K,V> f; int n, i, fh;
|
|
|
+ if (tab == null || (n = tab.length) == 0)
|
|
|
+ tab = initTable();
|
|
|
+ else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
|
|
|
+ Node<K,V> r = new ReservationNode<K,V>();
|
|
|
+ synchronized (r) {
|
|
|
+ if (casTabAt(tab, i, null, r)) {
|
|
|
+ binCount = 1;
|
|
|
+ Node<K,V> node = null;
|
|
|
+ try {
|
|
|
+ if ((val = remappingFunction.apply(key, null)) != null) {
|
|
|
+ delta = 1;
|
|
|
+ node = new Node<K,V>(h, key, val, null);
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ setTabAt(tab, i, node);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ else {
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ if (fh >= 0) {
|
|
|
+ binCount = 1;
|
|
|
+ for (Node<K,V> e = f, pred = null;; ++binCount) {
|
|
|
+ K ek;
|
|
|
+ if (e.hash == h &&
|
|
|
+ ((ek = e.key) == key ||
|
|
|
+ (ek != null && key.equals(ek)))) {
|
|
|
+ val = remappingFunction.apply(key, e.val);
|
|
|
+ if (val != null)
|
|
|
+ e.val = val;
|
|
|
+ else {
|
|
|
+ delta = -1;
|
|
|
+ Node<K,V> en = e.next;
|
|
|
+ if (pred != null)
|
|
|
+ pred.next = en;
|
|
|
+ else
|
|
|
+ setTabAt(tab, i, en);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ pred = e;
|
|
|
+ if ((e = e.next) == null) {
|
|
|
+ val = remappingFunction.apply(key, null);
|
|
|
+ if (val != null) {
|
|
|
+ delta = 1;
|
|
|
+ pred.next =
|
|
|
+ new Node<K,V>(h, key, val, null);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (f instanceof TreeBin) {
|
|
|
+ binCount = 1;
|
|
|
+ TreeBin<K,V> t = (TreeBin<K,V>)f;
|
|
|
+ TreeNode<K,V> r, p;
|
|
|
+ if ((r = t.root) != null)
|
|
|
+ p = r.findTreeNode(h, key, null);
|
|
|
+ else
|
|
|
+ p = null;
|
|
|
+ V pv = (p == null) ? null : p.val;
|
|
|
+ val = remappingFunction.apply(key, pv);
|
|
|
+ if (val != null) {
|
|
|
+ if (p != null)
|
|
|
+ p.val = val;
|
|
|
+ else {
|
|
|
+ delta = 1;
|
|
|
+ t.putTreeVal(h, key, val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (p != null) {
|
|
|
+ delta = -1;
|
|
|
+ if (t.removeTreeNode(p))
|
|
|
+ setTabAt(tab, i, untreeify(t.first));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0) {
|
|
|
+ if (binCount >= TREEIFY_THRESHOLD)
|
|
|
+ treeifyBin(tab, i);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (delta != 0)
|
|
|
+ addCount((long)delta, binCount);
|
|
|
+ return val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * If the specified key is not already associated with a
|
|
|
+ * (non-null) value, associates it with the given value.
|
|
|
+ * Otherwise, replaces the value with the results of the given
|
|
|
+ * remapping function, or removes if {@code null}. The entire
|
|
|
+ * method invocation is performed atomically. Some attempted
|
|
|
+ * update operations on this map by other threads may be blocked
|
|
|
+ * while computation is in progress, so the computation should be
|
|
|
+ * short and simple, and must not attempt to update any other
|
|
|
+ * mappings of this Map.
|
|
|
+ *
|
|
|
+ * @param key key with which the specified value is to be associated
|
|
|
+ * @param value the value to use if absent
|
|
|
+ * @param remappingFunction the function to recompute a value if present
|
|
|
+ * @return the new value associated with the specified key, or null if none
|
|
|
+ * @throws NullPointerException if the specified key or the
|
|
|
+ * remappingFunction is null
|
|
|
+ * @throws RuntimeException or Error if the remappingFunction does so,
|
|
|
+ * in which case the mapping is unchanged
|
|
|
+ */
|
|
|
+ public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
|
|
|
+ if (key == null || value == null || remappingFunction == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ int h = spread(key.hashCode());
|
|
|
+ V val = null;
|
|
|
+ int delta = 0;
|
|
|
+ int binCount = 0;
|
|
|
+ for (Node<K,V>[] tab = table;;) {
|
|
|
+ Node<K,V> f; int n, i, fh;
|
|
|
+ if (tab == null || (n = tab.length) == 0)
|
|
|
+ tab = initTable();
|
|
|
+ else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
|
|
|
+ if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
|
|
|
+ delta = 1;
|
|
|
+ val = value;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ else {
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ if (fh >= 0) {
|
|
|
+ binCount = 1;
|
|
|
+ for (Node<K,V> e = f, pred = null;; ++binCount) {
|
|
|
+ K ek;
|
|
|
+ if (e.hash == h &&
|
|
|
+ ((ek = e.key) == key ||
|
|
|
+ (ek != null && key.equals(ek)))) {
|
|
|
+ val = remappingFunction.apply(e.val, value);
|
|
|
+ if (val != null)
|
|
|
+ e.val = val;
|
|
|
+ else {
|
|
|
+ delta = -1;
|
|
|
+ Node<K,V> en = e.next;
|
|
|
+ if (pred != null)
|
|
|
+ pred.next = en;
|
|
|
+ else
|
|
|
+ setTabAt(tab, i, en);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ pred = e;
|
|
|
+ if ((e = e.next) == null) {
|
|
|
+ delta = 1;
|
|
|
+ val = value;
|
|
|
+ pred.next =
|
|
|
+ new Node<K,V>(h, key, val, null);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (f instanceof TreeBin) {
|
|
|
+ binCount = 2;
|
|
|
+ TreeBin<K,V> t = (TreeBin<K,V>)f;
|
|
|
+ TreeNode<K,V> r = t.root;
|
|
|
+ TreeNode<K,V> p = (r == null) ? null :
|
|
|
+ r.findTreeNode(h, key, null);
|
|
|
+ val = (p == null) ? value :
|
|
|
+ remappingFunction.apply(p.val, value);
|
|
|
+ if (val != null) {
|
|
|
+ if (p != null)
|
|
|
+ p.val = val;
|
|
|
+ else {
|
|
|
+ delta = 1;
|
|
|
+ t.putTreeVal(h, key, val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (p != null) {
|
|
|
+ delta = -1;
|
|
|
+ if (t.removeTreeNode(p))
|
|
|
+ setTabAt(tab, i, untreeify(t.first));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0) {
|
|
|
+ if (binCount >= TREEIFY_THRESHOLD)
|
|
|
+ treeifyBin(tab, i);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (delta != 0)
|
|
|
+ addCount((long)delta, binCount);
|
|
|
+ return val;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Hashtable legacy methods
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Legacy method testing if some key maps into the specified value
|
|
|
+ * in this table. This method is identical in functionality to
|
|
|
+ * {@link #containsValue(Object)}, and exists solely to ensure
|
|
|
+ * full compatibility with class {@link Hashtable},
|
|
|
+ * which supported this method prior to introduction of the
|
|
|
+ * Java Collections framework.
|
|
|
+ *
|
|
|
+ * @param value a value to search for
|
|
|
+ * @return {@code true} if and only if some key maps to the
|
|
|
+ * {@code value} argument in this table as
|
|
|
+ * determined by the {@code equals} method;
|
|
|
+ * {@code false} otherwise
|
|
|
+ * @throws NullPointerException if the specified value is null
|
|
|
+ */
|
|
|
+ @Deprecated public boolean contains(Object value) {
|
|
|
+ return containsValue(value);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns an enumeration of the keys in this table.
|
|
|
+ *
|
|
|
+ * @return an enumeration of the keys in this table
|
|
|
+ * @see #keySet()
|
|
|
+ */
|
|
|
+ public Enumeration<K> keys() {
|
|
|
+ Node<K,V>[] t;
|
|
|
+ int f = (t = table) == null ? 0 : t.length;
|
|
|
+ return new KeyIterator<K,V>(t, f, 0, f, this);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns an enumeration of the values in this table.
|
|
|
+ *
|
|
|
+ * @return an enumeration of the values in this table
|
|
|
+ * @see #values()
|
|
|
+ */
|
|
|
+ public Enumeration<V> elements() {
|
|
|
+ Node<K,V>[] t;
|
|
|
+ int f = (t = table) == null ? 0 : t.length;
|
|
|
+ return new ValueIterator<K,V>(t, f, 0, f, this);
|
|
|
+ }
|
|
|
+
|
|
|
+ // ConcurrentHashMapV8-only methods
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the number of mappings. This method should be used
|
|
|
+ * instead of {@link #size} because a ConcurrentHashMapV8 may
|
|
|
+ * contain more mappings than can be represented as an int. The
|
|
|
+ * value returned is an estimate; the actual count may differ if
|
|
|
+ * there are concurrent insertions or removals.
|
|
|
+ *
|
|
|
+ * @return the number of mappings
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public long mappingCount() {
|
|
|
+ long n = sumCount();
|
|
|
+ return (n < 0L) ? 0L : n; // ignore transient negative values
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a new {@link Set} backed by a ConcurrentHashMapV8
|
|
|
+ * from the given type to {@code Boolean.TRUE}.
|
|
|
+ *
|
|
|
+ * @return the new set
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public static <K> KeySetView<K,Boolean> newKeySet() {
|
|
|
+ return new KeySetView<K,Boolean>
|
|
|
+ (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a new {@link Set} backed by a ConcurrentHashMapV8
|
|
|
+ * from the given type to {@code Boolean.TRUE}.
|
|
|
+ *
|
|
|
+ * @param initialCapacity The implementation performs internal
|
|
|
+ * sizing to accommodate this many elements.
|
|
|
+ * @return the new set
|
|
|
+ * @throws IllegalArgumentException if the initial capacity of
|
|
|
+ * elements is negative
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
|
|
|
+ return new KeySetView<K,Boolean>
|
|
|
+ (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a {@link Set} view of the keys in this map, using the
|
|
|
+ * given common mapped value for any additions (i.e., {@link
|
|
|
+ * Collection#add} and {@link Collection#addAll(Collection)}).
|
|
|
+ * This is of course only appropriate if it is acceptable to use
|
|
|
+ * the same value for all additions from this view.
|
|
|
+ *
|
|
|
+ * @param mappedValue the mapped value to use for any additions
|
|
|
+ * @return the set view
|
|
|
+ * @throws NullPointerException if the mappedValue is null
|
|
|
+ */
|
|
|
+ public KeySetView<K,V> keySet(V mappedValue) {
|
|
|
+ if (mappedValue == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new KeySetView<K,V>(this, mappedValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- Special Nodes -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A node inserted at head of bins during transfer operations.
|
|
|
+ */
|
|
|
+ static final class ForwardingNode<K,V> extends Node<K,V> {
|
|
|
+ final Node<K,V>[] nextTable;
|
|
|
+ ForwardingNode(Node<K,V>[] tab) {
|
|
|
+ super(MOVED, null, null, null);
|
|
|
+ this.nextTable = tab;
|
|
|
+ }
|
|
|
+
|
|
|
+ Node<K,V> find(int h, Object k) {
|
|
|
+ // loop to avoid arbitrarily deep recursion on forwarding nodes
|
|
|
+ outer: for (Node<K,V>[] tab = nextTable;;) {
|
|
|
+ Node<K,V> e; int n;
|
|
|
+ if (k == null || tab == null || (n = tab.length) == 0 ||
|
|
|
+ (e = tabAt(tab, (n - 1) & h)) == null)
|
|
|
+ return null;
|
|
|
+ for (;;) {
|
|
|
+ int eh; K ek;
|
|
|
+ if ((eh = e.hash) == h &&
|
|
|
+ ((ek = e.key) == k || (ek != null && k.equals(ek))))
|
|
|
+ return e;
|
|
|
+ if (eh < 0) {
|
|
|
+ if (e instanceof ForwardingNode) {
|
|
|
+ tab = ((ForwardingNode<K,V>)e).nextTable;
|
|
|
+ continue outer;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return e.find(h, k);
|
|
|
+ }
|
|
|
+ if ((e = e.next) == null)
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A place-holder node used in computeIfAbsent and compute
|
|
|
+ */
|
|
|
+ static final class ReservationNode<K,V> extends Node<K,V> {
|
|
|
+ ReservationNode() {
|
|
|
+ super(RESERVED, null, null, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ Node<K,V> find(int h, Object k) {
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- Table Initialization and Resizing -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the stamp bits for resizing a table of size n.
|
|
|
+ * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
|
|
|
+ */
|
|
|
+ static final int resizeStamp(int n) {
|
|
|
+ return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Initializes table, using the size recorded in sizeCtl.
|
|
|
+ */
|
|
|
+ private final Node<K,V>[] initTable() {
|
|
|
+ Node<K,V>[] tab; int sc;
|
|
|
+ while ((tab = table) == null || tab.length == 0) {
|
|
|
+ if ((sc = sizeCtl) < 0)
|
|
|
+ Thread.yield(); // lost initialization race; just spin
|
|
|
+ else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
|
|
|
+ try {
|
|
|
+ if ((tab = table) == null || tab.length == 0) {
|
|
|
+ int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
|
|
|
+ @SuppressWarnings("unchecked")
|
|
|
+ Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
|
|
|
+ table = tab = nt;
|
|
|
+ sc = n - (n >>> 2);
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ sizeCtl = sc;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return tab;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Adds to count, and if table is too small and not already
|
|
|
+ * resizing, initiates transfer. If already resizing, helps
|
|
|
+ * perform transfer if work is available. Rechecks occupancy
|
|
|
+ * after a transfer to see if another resize is already needed
|
|
|
+ * because resizings are lagging additions.
|
|
|
+ *
|
|
|
+ * @param x the count to add
|
|
|
+ * @param check if <0, don't check resize, if <= 1 only check if uncontended
|
|
|
+ */
|
|
|
+ private final void addCount(long x, int check) {
|
|
|
+ CounterCell[] as; long b, s;
|
|
|
+ if ((as = counterCells) != null ||
|
|
|
+ !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
|
|
|
+ CounterHashCode hc; CounterCell a; long v; int m;
|
|
|
+ boolean uncontended = true;
|
|
|
+ if ((hc = threadCounterHashCode.get()) == null ||
|
|
|
+ as == null || (m = as.length - 1) < 0 ||
|
|
|
+ (a = as[m & hc.code]) == null ||
|
|
|
+ !(uncontended =
|
|
|
+ U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
|
|
|
+ fullAddCount(x, hc, uncontended);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (check <= 1)
|
|
|
+ return;
|
|
|
+ s = sumCount();
|
|
|
+ }
|
|
|
+ if (check >= 0) {
|
|
|
+ Node<K,V>[] tab, nt; int n, sc;
|
|
|
+ while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
|
|
|
+ (n = tab.length) < MAXIMUM_CAPACITY) {
|
|
|
+ int rs = resizeStamp(n);
|
|
|
+ if (sc < 0) {
|
|
|
+ if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
|
|
|
+ sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
|
|
|
+ transferIndex <= 0)
|
|
|
+ break;
|
|
|
+ if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
|
|
|
+ transfer(tab, nt);
|
|
|
+ }
|
|
|
+ else if (U.compareAndSwapInt(this, SIZECTL, sc,
|
|
|
+ (rs << RESIZE_STAMP_SHIFT) + 2))
|
|
|
+ transfer(tab, null);
|
|
|
+ s = sumCount();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Helps transfer if a resize is in progress.
|
|
|
+ */
|
|
|
+ final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
|
|
|
+ Node<K,V>[] nextTab; int sc;
|
|
|
+ if (tab != null && (f instanceof ForwardingNode) &&
|
|
|
+ (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
|
|
|
+ int rs = resizeStamp(tab.length);
|
|
|
+ while (nextTab == nextTable && table == tab &&
|
|
|
+ (sc = sizeCtl) < 0) {
|
|
|
+ if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
|
|
|
+ sc == rs + MAX_RESIZERS || transferIndex <= 0)
|
|
|
+ break;
|
|
|
+ if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
|
|
|
+ transfer(tab, nextTab);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return nextTab;
|
|
|
+ }
|
|
|
+ return table;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Tries to presize table to accommodate the given number of elements.
|
|
|
+ *
|
|
|
+ * @param size number of elements (doesn't need to be perfectly accurate)
|
|
|
+ */
|
|
|
+ private final void tryPresize(int size) {
|
|
|
+ int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
|
|
|
+ tableSizeFor(size + (size >>> 1) + 1);
|
|
|
+ int sc;
|
|
|
+ while ((sc = sizeCtl) >= 0) {
|
|
|
+ Node<K,V>[] tab = table; int n;
|
|
|
+ if (tab == null || (n = tab.length) == 0) {
|
|
|
+ n = (sc > c) ? sc : c;
|
|
|
+ if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
|
|
|
+ try {
|
|
|
+ if (table == tab) {
|
|
|
+ @SuppressWarnings("unchecked")
|
|
|
+ Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
|
|
|
+ table = nt;
|
|
|
+ sc = n - (n >>> 2);
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ sizeCtl = sc;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (c <= sc || n >= MAXIMUM_CAPACITY)
|
|
|
+ break;
|
|
|
+ else if (tab == table) {
|
|
|
+ int rs = resizeStamp(n);
|
|
|
+ if (sc < 0) {
|
|
|
+ Node<K,V>[] nt;
|
|
|
+ if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
|
|
|
+ sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
|
|
|
+ transferIndex <= 0)
|
|
|
+ break;
|
|
|
+ if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
|
|
|
+ transfer(tab, nt);
|
|
|
+ }
|
|
|
+ else if (U.compareAndSwapInt(this, SIZECTL, sc,
|
|
|
+ (rs << RESIZE_STAMP_SHIFT) + 2))
|
|
|
+ transfer(tab, null);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Moves and/or copies the nodes in each bin to new table. See
|
|
|
+ * above for explanation.
|
|
|
+ */
|
|
|
+ private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
|
|
|
+ int n = tab.length, stride;
|
|
|
+ if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
|
|
|
+ stride = MIN_TRANSFER_STRIDE; // subdivide range
|
|
|
+ if (nextTab == null) { // initiating
|
|
|
+ try {
|
|
|
+ @SuppressWarnings("unchecked")
|
|
|
+ Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
|
|
|
+ nextTab = nt;
|
|
|
+ } catch (Throwable ex) { // try to cope with OOME
|
|
|
+ sizeCtl = Integer.MAX_VALUE;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ nextTable = nextTab;
|
|
|
+ transferIndex = n;
|
|
|
+ }
|
|
|
+ int nextn = nextTab.length;
|
|
|
+ ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
|
|
|
+ boolean advance = true;
|
|
|
+ boolean finishing = false; // to ensure sweep before committing nextTab
|
|
|
+ for (int i = 0, bound = 0;;) {
|
|
|
+ Node<K,V> f; int fh;
|
|
|
+ while (advance) {
|
|
|
+ int nextIndex, nextBound;
|
|
|
+ if (--i >= bound || finishing)
|
|
|
+ advance = false;
|
|
|
+ else if ((nextIndex = transferIndex) <= 0) {
|
|
|
+ i = -1;
|
|
|
+ advance = false;
|
|
|
+ }
|
|
|
+ else if (U.compareAndSwapInt
|
|
|
+ (this, TRANSFERINDEX, nextIndex,
|
|
|
+ nextBound = (nextIndex > stride ?
|
|
|
+ nextIndex - stride : 0))) {
|
|
|
+ bound = nextBound;
|
|
|
+ i = nextIndex - 1;
|
|
|
+ advance = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (i < 0 || i >= n || i + n >= nextn) {
|
|
|
+ int sc;
|
|
|
+ if (finishing) {
|
|
|
+ nextTable = null;
|
|
|
+ table = nextTab;
|
|
|
+ sizeCtl = (n << 1) - (n >>> 1);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
|
|
|
+ if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
|
|
|
+ return;
|
|
|
+ finishing = advance = true;
|
|
|
+ i = n; // recheck before commit
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if ((f = tabAt(tab, i)) == null)
|
|
|
+ advance = casTabAt(tab, i, null, fwd);
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ advance = true; // already processed
|
|
|
+ else {
|
|
|
+ synchronized (f) {
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ Node<K,V> ln, hn;
|
|
|
+ if (fh >= 0) {
|
|
|
+ int runBit = fh & n;
|
|
|
+ Node<K,V> lastRun = f;
|
|
|
+ for (Node<K,V> p = f.next; p != null; p = p.next) {
|
|
|
+ int b = p.hash & n;
|
|
|
+ if (b != runBit) {
|
|
|
+ runBit = b;
|
|
|
+ lastRun = p;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (runBit == 0) {
|
|
|
+ ln = lastRun;
|
|
|
+ hn = null;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ hn = lastRun;
|
|
|
+ ln = null;
|
|
|
+ }
|
|
|
+ for (Node<K,V> p = f; p != lastRun; p = p.next) {
|
|
|
+ int ph = p.hash; K pk = p.key; V pv = p.val;
|
|
|
+ if ((ph & n) == 0)
|
|
|
+ ln = new Node<K,V>(ph, pk, pv, ln);
|
|
|
+ else
|
|
|
+ hn = new Node<K,V>(ph, pk, pv, hn);
|
|
|
+ }
|
|
|
+ setTabAt(nextTab, i, ln);
|
|
|
+ setTabAt(nextTab, i + n, hn);
|
|
|
+ setTabAt(tab, i, fwd);
|
|
|
+ advance = true;
|
|
|
+ }
|
|
|
+ else if (f instanceof TreeBin) {
|
|
|
+ TreeBin<K,V> t = (TreeBin<K,V>)f;
|
|
|
+ TreeNode<K,V> lo = null, loTail = null;
|
|
|
+ TreeNode<K,V> hi = null, hiTail = null;
|
|
|
+ int lc = 0, hc = 0;
|
|
|
+ for (Node<K,V> e = t.first; e != null; e = e.next) {
|
|
|
+ int h = e.hash;
|
|
|
+ TreeNode<K,V> p = new TreeNode<K,V>
|
|
|
+ (h, e.key, e.val, null, null);
|
|
|
+ if ((h & n) == 0) {
|
|
|
+ if ((p.prev = loTail) == null)
|
|
|
+ lo = p;
|
|
|
+ else
|
|
|
+ loTail.next = p;
|
|
|
+ loTail = p;
|
|
|
+ ++lc;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if ((p.prev = hiTail) == null)
|
|
|
+ hi = p;
|
|
|
+ else
|
|
|
+ hiTail.next = p;
|
|
|
+ hiTail = p;
|
|
|
+ ++hc;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
|
|
|
+ (hc != 0) ? new TreeBin<K,V>(lo) : t;
|
|
|
+ hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
|
|
|
+ (lc != 0) ? new TreeBin<K,V>(hi) : t;
|
|
|
+ setTabAt(nextTab, i, ln);
|
|
|
+ setTabAt(nextTab, i + n, hn);
|
|
|
+ setTabAt(tab, i, fwd);
|
|
|
+ advance = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- Conversion from/to TreeBins -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Replaces all linked nodes in bin at given index unless table is
|
|
|
+ * too small, in which case resizes instead.
|
|
|
+ */
|
|
|
+ private final void treeifyBin(Node<K,V>[] tab, int index) {
|
|
|
+ Node<K,V> b; int n, sc;
|
|
|
+ if (tab != null) {
|
|
|
+ if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
|
|
|
+ tryPresize(n << 1);
|
|
|
+ else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
|
|
|
+ synchronized (b) {
|
|
|
+ if (tabAt(tab, index) == b) {
|
|
|
+ TreeNode<K,V> hd = null, tl = null;
|
|
|
+ for (Node<K,V> e = b; e != null; e = e.next) {
|
|
|
+ TreeNode<K,V> p =
|
|
|
+ new TreeNode<K,V>(e.hash, e.key, e.val,
|
|
|
+ null, null);
|
|
|
+ if ((p.prev = tl) == null)
|
|
|
+ hd = p;
|
|
|
+ else
|
|
|
+ tl.next = p;
|
|
|
+ tl = p;
|
|
|
+ }
|
|
|
+ setTabAt(tab, index, new TreeBin<K,V>(hd));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a list of non-TreeNodes replacing those in given list.
|
|
|
+ */
|
|
|
+ static <K,V> Node<K,V> untreeify(Node<K,V> b) {
|
|
|
+ Node<K,V> hd = null, tl = null;
|
|
|
+ for (Node<K,V> q = b; q != null; q = q.next) {
|
|
|
+ Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
|
|
|
+ if (tl == null)
|
|
|
+ hd = p;
|
|
|
+ else
|
|
|
+ tl.next = p;
|
|
|
+ tl = p;
|
|
|
+ }
|
|
|
+ return hd;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- TreeNodes -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Nodes for use in TreeBins
|
|
|
+ */
|
|
|
+ static final class TreeNode<K,V> extends Node<K,V> {
|
|
|
+ TreeNode<K,V> parent; // red-black tree links
|
|
|
+ TreeNode<K,V> left;
|
|
|
+ TreeNode<K,V> right;
|
|
|
+ TreeNode<K,V> prev; // needed to unlink next upon deletion
|
|
|
+ boolean red;
|
|
|
+
|
|
|
+ TreeNode(int hash, K key, V val, Node<K,V> next,
|
|
|
+ TreeNode<K,V> parent) {
|
|
|
+ super(hash, key, val, next);
|
|
|
+ this.parent = parent;
|
|
|
+ }
|
|
|
+
|
|
|
+ Node<K,V> find(int h, Object k) {
|
|
|
+ return findTreeNode(h, k, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the TreeNode (or null if not found) for the given key
|
|
|
+ * starting at given root.
|
|
|
+ */
|
|
|
+ final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
|
|
|
+ if (k != null) {
|
|
|
+ TreeNode<K,V> p = this;
|
|
|
+ do {
|
|
|
+ int ph, dir; K pk; TreeNode<K,V> q;
|
|
|
+ TreeNode<K,V> pl = p.left, pr = p.right;
|
|
|
+ if ((ph = p.hash) > h)
|
|
|
+ p = pl;
|
|
|
+ else if (ph < h)
|
|
|
+ p = pr;
|
|
|
+ else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
|
|
|
+ return p;
|
|
|
+ else if (pl == null)
|
|
|
+ p = pr;
|
|
|
+ else if (pr == null)
|
|
|
+ p = pl;
|
|
|
+ else if ((kc != null ||
|
|
|
+ (kc = comparableClassFor(k)) != null) &&
|
|
|
+ (dir = compareComparables(kc, k, pk)) != 0)
|
|
|
+ p = (dir < 0) ? pl : pr;
|
|
|
+ else if ((q = pr.findTreeNode(h, k, kc)) != null)
|
|
|
+ return q;
|
|
|
+ else
|
|
|
+ p = pl;
|
|
|
+ } while (p != null);
|
|
|
+ }
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- TreeBins -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * TreeNodes used at the heads of bins. TreeBins do not hold user
|
|
|
+ * keys or values, but instead point to list of TreeNodes and
|
|
|
+ * their root. They also maintain a parasitic read-write lock
|
|
|
+ * forcing writers (who hold bin lock) to wait for readers (who do
|
|
|
+ * not) to complete before tree restructuring operations.
|
|
|
+ */
|
|
|
+ static final class TreeBin<K,V> extends Node<K,V> {
|
|
|
+ TreeNode<K,V> root;
|
|
|
+ volatile TreeNode<K,V> first;
|
|
|
+ volatile Thread waiter;
|
|
|
+ volatile int lockState;
|
|
|
+ // values for lockState
|
|
|
+ static final int WRITER = 1; // set while holding write lock
|
|
|
+ static final int WAITER = 2; // set when waiting for write lock
|
|
|
+ static final int READER = 4; // increment value for setting read lock
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Tie-breaking utility for ordering insertions when equal
|
|
|
+ * hashCodes and non-comparable. We don't require a total
|
|
|
+ * order, just a consistent insertion rule to maintain
|
|
|
+ * equivalence across rebalancings. Tie-breaking further than
|
|
|
+ * necessary simplifies testing a bit.
|
|
|
+ */
|
|
|
+ static int tieBreakOrder(Object a, Object b) {
|
|
|
+ int d;
|
|
|
+ if (a == null || b == null ||
|
|
|
+ (d = a.getClass().getName().
|
|
|
+ compareTo(b.getClass().getName())) == 0)
|
|
|
+ d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
|
|
|
+ -1 : 1);
|
|
|
+ return d;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates bin with initial set of nodes headed by b.
|
|
|
+ */
|
|
|
+ TreeBin(TreeNode<K,V> b) {
|
|
|
+ super(TREEBIN, null, null, null);
|
|
|
+ this.first = b;
|
|
|
+ TreeNode<K,V> r = null;
|
|
|
+ for (TreeNode<K,V> x = b, next; x != null; x = next) {
|
|
|
+ next = (TreeNode<K,V>)x.next;
|
|
|
+ x.left = x.right = null;
|
|
|
+ if (r == null) {
|
|
|
+ x.parent = null;
|
|
|
+ x.red = false;
|
|
|
+ r = x;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ K k = x.key;
|
|
|
+ int h = x.hash;
|
|
|
+ Class<?> kc = null;
|
|
|
+ for (TreeNode<K,V> p = r;;) {
|
|
|
+ int dir, ph;
|
|
|
+ K pk = p.key;
|
|
|
+ if ((ph = p.hash) > h)
|
|
|
+ dir = -1;
|
|
|
+ else if (ph < h)
|
|
|
+ dir = 1;
|
|
|
+ else if ((kc == null &&
|
|
|
+ (kc = comparableClassFor(k)) == null) ||
|
|
|
+ (dir = compareComparables(kc, k, pk)) == 0)
|
|
|
+ dir = tieBreakOrder(k, pk);
|
|
|
+ TreeNode<K,V> xp = p;
|
|
|
+ if ((p = (dir <= 0) ? p.left : p.right) == null) {
|
|
|
+ x.parent = xp;
|
|
|
+ if (dir <= 0)
|
|
|
+ xp.left = x;
|
|
|
+ else
|
|
|
+ xp.right = x;
|
|
|
+ r = balanceInsertion(r, x);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ this.root = r;
|
|
|
+ assert checkInvariants(root);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Acquires write lock for tree restructuring.
|
|
|
+ */
|
|
|
+ private final void lockRoot() {
|
|
|
+ if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
|
|
|
+ contendedLock(); // offload to separate method
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Releases write lock for tree restructuring.
|
|
|
+ */
|
|
|
+ private final void unlockRoot() {
|
|
|
+ lockState = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Possibly blocks awaiting root lock.
|
|
|
+ */
|
|
|
+ private final void contendedLock() {
|
|
|
+ boolean waiting = false;
|
|
|
+ for (int s;;) {
|
|
|
+ if (((s = lockState) & ~WAITER) == 0) {
|
|
|
+ if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
|
|
|
+ if (waiting)
|
|
|
+ waiter = null;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if ((s & WAITER) == 0) {
|
|
|
+ if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
|
|
|
+ waiting = true;
|
|
|
+ waiter = Thread.currentThread();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (waiting)
|
|
|
+ LockSupport.park(this);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns matching node or null if none. Tries to search
|
|
|
+ * using tree comparisons from root, but continues linear
|
|
|
+ * search when lock not available.
|
|
|
+ */
|
|
|
+ final Node<K,V> find(int h, Object k) {
|
|
|
+ if (k != null) {
|
|
|
+ for (Node<K,V> e = first; e != null; ) {
|
|
|
+ int s; K ek;
|
|
|
+ if (((s = lockState) & (WAITER|WRITER)) != 0) {
|
|
|
+ if (e.hash == h &&
|
|
|
+ ((ek = e.key) == k || (ek != null && k.equals(ek))))
|
|
|
+ return e;
|
|
|
+ e = e.next;
|
|
|
+ }
|
|
|
+ else if (U.compareAndSwapInt(this, LOCKSTATE, s,
|
|
|
+ s + READER)) {
|
|
|
+ TreeNode<K,V> r, p;
|
|
|
+ try {
|
|
|
+ p = ((r = root) == null ? null :
|
|
|
+ r.findTreeNode(h, k, null));
|
|
|
+ } finally {
|
|
|
+ Thread w;
|
|
|
+ int ls;
|
|
|
+ do {} while (!U.compareAndSwapInt
|
|
|
+ (this, LOCKSTATE,
|
|
|
+ ls = lockState, ls - READER));
|
|
|
+ if (ls == (READER|WAITER) && (w = waiter) != null)
|
|
|
+ LockSupport.unpark(w);
|
|
|
+ }
|
|
|
+ return p;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Finds or adds a node.
|
|
|
+ * @return null if added
|
|
|
+ */
|
|
|
+ final TreeNode<K,V> putTreeVal(int h, K k, V v) {
|
|
|
+ Class<?> kc = null;
|
|
|
+ boolean searched = false;
|
|
|
+ for (TreeNode<K,V> p = root;;) {
|
|
|
+ int dir, ph; K pk;
|
|
|
+ if (p == null) {
|
|
|
+ first = root = new TreeNode<K,V>(h, k, v, null, null);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ else if ((ph = p.hash) > h)
|
|
|
+ dir = -1;
|
|
|
+ else if (ph < h)
|
|
|
+ dir = 1;
|
|
|
+ else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
|
|
|
+ return p;
|
|
|
+ else if ((kc == null &&
|
|
|
+ (kc = comparableClassFor(k)) == null) ||
|
|
|
+ (dir = compareComparables(kc, k, pk)) == 0) {
|
|
|
+ if (!searched) {
|
|
|
+ TreeNode<K,V> q, ch;
|
|
|
+ searched = true;
|
|
|
+ if (((ch = p.left) != null &&
|
|
|
+ (q = ch.findTreeNode(h, k, kc)) != null) ||
|
|
|
+ ((ch = p.right) != null &&
|
|
|
+ (q = ch.findTreeNode(h, k, kc)) != null))
|
|
|
+ return q;
|
|
|
+ }
|
|
|
+ dir = tieBreakOrder(k, pk);
|
|
|
+ }
|
|
|
+
|
|
|
+ TreeNode<K,V> xp = p;
|
|
|
+ if ((p = (dir <= 0) ? p.left : p.right) == null) {
|
|
|
+ TreeNode<K,V> x, f = first;
|
|
|
+ first = x = new TreeNode<K,V>(h, k, v, f, xp);
|
|
|
+ if (f != null)
|
|
|
+ f.prev = x;
|
|
|
+ if (dir <= 0)
|
|
|
+ xp.left = x;
|
|
|
+ else
|
|
|
+ xp.right = x;
|
|
|
+ if (!xp.red)
|
|
|
+ x.red = true;
|
|
|
+ else {
|
|
|
+ lockRoot();
|
|
|
+ try {
|
|
|
+ root = balanceInsertion(root, x);
|
|
|
+ } finally {
|
|
|
+ unlockRoot();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ assert checkInvariants(root);
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Removes the given node, that must be present before this
|
|
|
+ * call. This is messier than typical red-black deletion code
|
|
|
+ * because we cannot swap the contents of an interior node
|
|
|
+ * with a leaf successor that is pinned by "next" pointers
|
|
|
+ * that are accessible independently of lock. So instead we
|
|
|
+ * swap the tree linkages.
|
|
|
+ *
|
|
|
+ * @return true if now too small, so should be untreeified
|
|
|
+ */
|
|
|
+ final boolean removeTreeNode(TreeNode<K,V> p) {
|
|
|
+ TreeNode<K,V> next = (TreeNode<K,V>)p.next;
|
|
|
+ TreeNode<K,V> pred = p.prev; // unlink traversal pointers
|
|
|
+ TreeNode<K,V> r, rl;
|
|
|
+ if (pred == null)
|
|
|
+ first = next;
|
|
|
+ else
|
|
|
+ pred.next = next;
|
|
|
+ if (next != null)
|
|
|
+ next.prev = pred;
|
|
|
+ if (first == null) {
|
|
|
+ root = null;
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if ((r = root) == null || r.right == null || // too small
|
|
|
+ (rl = r.left) == null || rl.left == null)
|
|
|
+ return true;
|
|
|
+ lockRoot();
|
|
|
+ try {
|
|
|
+ TreeNode<K,V> replacement;
|
|
|
+ TreeNode<K,V> pl = p.left;
|
|
|
+ TreeNode<K,V> pr = p.right;
|
|
|
+ if (pl != null && pr != null) {
|
|
|
+ TreeNode<K,V> s = pr, sl;
|
|
|
+ while ((sl = s.left) != null) // find successor
|
|
|
+ s = sl;
|
|
|
+ boolean c = s.red; s.red = p.red; p.red = c; // swap colors
|
|
|
+ TreeNode<K,V> sr = s.right;
|
|
|
+ TreeNode<K,V> pp = p.parent;
|
|
|
+ if (s == pr) { // p was s's direct parent
|
|
|
+ p.parent = s;
|
|
|
+ s.right = p;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ TreeNode<K,V> sp = s.parent;
|
|
|
+ if ((p.parent = sp) != null) {
|
|
|
+ if (s == sp.left)
|
|
|
+ sp.left = p;
|
|
|
+ else
|
|
|
+ sp.right = p;
|
|
|
+ }
|
|
|
+ if ((s.right = pr) != null)
|
|
|
+ pr.parent = s;
|
|
|
+ }
|
|
|
+ p.left = null;
|
|
|
+ if ((p.right = sr) != null)
|
|
|
+ sr.parent = p;
|
|
|
+ if ((s.left = pl) != null)
|
|
|
+ pl.parent = s;
|
|
|
+ if ((s.parent = pp) == null)
|
|
|
+ r = s;
|
|
|
+ else if (p == pp.left)
|
|
|
+ pp.left = s;
|
|
|
+ else
|
|
|
+ pp.right = s;
|
|
|
+ if (sr != null)
|
|
|
+ replacement = sr;
|
|
|
+ else
|
|
|
+ replacement = p;
|
|
|
+ }
|
|
|
+ else if (pl != null)
|
|
|
+ replacement = pl;
|
|
|
+ else if (pr != null)
|
|
|
+ replacement = pr;
|
|
|
+ else
|
|
|
+ replacement = p;
|
|
|
+ if (replacement != p) {
|
|
|
+ TreeNode<K,V> pp = replacement.parent = p.parent;
|
|
|
+ if (pp == null)
|
|
|
+ r = replacement;
|
|
|
+ else if (p == pp.left)
|
|
|
+ pp.left = replacement;
|
|
|
+ else
|
|
|
+ pp.right = replacement;
|
|
|
+ p.left = p.right = p.parent = null;
|
|
|
+ }
|
|
|
+
|
|
|
+ root = (p.red) ? r : balanceDeletion(r, replacement);
|
|
|
+
|
|
|
+ if (p == replacement) { // detach pointers
|
|
|
+ TreeNode<K,V> pp;
|
|
|
+ if ((pp = p.parent) != null) {
|
|
|
+ if (p == pp.left)
|
|
|
+ pp.left = null;
|
|
|
+ else if (p == pp.right)
|
|
|
+ pp.right = null;
|
|
|
+ p.parent = null;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ unlockRoot();
|
|
|
+ }
|
|
|
+ assert checkInvariants(root);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ------------------------------------------------------------ */
|
|
|
+ // Red-black tree methods, all adapted from CLR
|
|
|
+
|
|
|
+ static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
|
|
|
+ TreeNode<K,V> p) {
|
|
|
+ TreeNode<K,V> r, pp, rl;
|
|
|
+ if (p != null && (r = p.right) != null) {
|
|
|
+ if ((rl = p.right = r.left) != null)
|
|
|
+ rl.parent = p;
|
|
|
+ if ((pp = r.parent = p.parent) == null)
|
|
|
+ (root = r).red = false;
|
|
|
+ else if (pp.left == p)
|
|
|
+ pp.left = r;
|
|
|
+ else
|
|
|
+ pp.right = r;
|
|
|
+ r.left = p;
|
|
|
+ p.parent = r;
|
|
|
+ }
|
|
|
+ return root;
|
|
|
+ }
|
|
|
+
|
|
|
+ static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
|
|
|
+ TreeNode<K,V> p) {
|
|
|
+ TreeNode<K,V> l, pp, lr;
|
|
|
+ if (p != null && (l = p.left) != null) {
|
|
|
+ if ((lr = p.left = l.right) != null)
|
|
|
+ lr.parent = p;
|
|
|
+ if ((pp = l.parent = p.parent) == null)
|
|
|
+ (root = l).red = false;
|
|
|
+ else if (pp.right == p)
|
|
|
+ pp.right = l;
|
|
|
+ else
|
|
|
+ pp.left = l;
|
|
|
+ l.right = p;
|
|
|
+ p.parent = l;
|
|
|
+ }
|
|
|
+ return root;
|
|
|
+ }
|
|
|
+
|
|
|
+ static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
|
|
|
+ TreeNode<K,V> x) {
|
|
|
+ x.red = true;
|
|
|
+ for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
|
|
|
+ if ((xp = x.parent) == null) {
|
|
|
+ x.red = false;
|
|
|
+ return x;
|
|
|
+ }
|
|
|
+ else if (!xp.red || (xpp = xp.parent) == null)
|
|
|
+ return root;
|
|
|
+ if (xp == (xppl = xpp.left)) {
|
|
|
+ if ((xppr = xpp.right) != null && xppr.red) {
|
|
|
+ xppr.red = false;
|
|
|
+ xp.red = false;
|
|
|
+ xpp.red = true;
|
|
|
+ x = xpp;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (x == xp.right) {
|
|
|
+ root = rotateLeft(root, x = xp);
|
|
|
+ xpp = (xp = x.parent) == null ? null : xp.parent;
|
|
|
+ }
|
|
|
+ if (xp != null) {
|
|
|
+ xp.red = false;
|
|
|
+ if (xpp != null) {
|
|
|
+ xpp.red = true;
|
|
|
+ root = rotateRight(root, xpp);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (xppl != null && xppl.red) {
|
|
|
+ xppl.red = false;
|
|
|
+ xp.red = false;
|
|
|
+ xpp.red = true;
|
|
|
+ x = xpp;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (x == xp.left) {
|
|
|
+ root = rotateRight(root, x = xp);
|
|
|
+ xpp = (xp = x.parent) == null ? null : xp.parent;
|
|
|
+ }
|
|
|
+ if (xp != null) {
|
|
|
+ xp.red = false;
|
|
|
+ if (xpp != null) {
|
|
|
+ xpp.red = true;
|
|
|
+ root = rotateLeft(root, xpp);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
|
|
|
+ TreeNode<K,V> x) {
|
|
|
+ for (TreeNode<K,V> xp, xpl, xpr;;) {
|
|
|
+ if (x == null || x == root)
|
|
|
+ return root;
|
|
|
+ else if ((xp = x.parent) == null) {
|
|
|
+ x.red = false;
|
|
|
+ return x;
|
|
|
+ }
|
|
|
+ else if (x.red) {
|
|
|
+ x.red = false;
|
|
|
+ return root;
|
|
|
+ }
|
|
|
+ else if ((xpl = xp.left) == x) {
|
|
|
+ if ((xpr = xp.right) != null && xpr.red) {
|
|
|
+ xpr.red = false;
|
|
|
+ xp.red = true;
|
|
|
+ root = rotateLeft(root, xp);
|
|
|
+ xpr = (xp = x.parent) == null ? null : xp.right;
|
|
|
+ }
|
|
|
+ if (xpr == null)
|
|
|
+ x = xp;
|
|
|
+ else {
|
|
|
+ TreeNode<K,V> sl = xpr.left, sr = xpr.right;
|
|
|
+ if ((sr == null || !sr.red) &&
|
|
|
+ (sl == null || !sl.red)) {
|
|
|
+ xpr.red = true;
|
|
|
+ x = xp;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (sr == null || !sr.red) {
|
|
|
+ if (sl != null)
|
|
|
+ sl.red = false;
|
|
|
+ xpr.red = true;
|
|
|
+ root = rotateRight(root, xpr);
|
|
|
+ xpr = (xp = x.parent) == null ?
|
|
|
+ null : xp.right;
|
|
|
+ }
|
|
|
+ if (xpr != null) {
|
|
|
+ xpr.red = (xp == null) ? false : xp.red;
|
|
|
+ if ((sr = xpr.right) != null)
|
|
|
+ sr.red = false;
|
|
|
+ }
|
|
|
+ if (xp != null) {
|
|
|
+ xp.red = false;
|
|
|
+ root = rotateLeft(root, xp);
|
|
|
+ }
|
|
|
+ x = root;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else { // symmetric
|
|
|
+ if (xpl != null && xpl.red) {
|
|
|
+ xpl.red = false;
|
|
|
+ xp.red = true;
|
|
|
+ root = rotateRight(root, xp);
|
|
|
+ xpl = (xp = x.parent) == null ? null : xp.left;
|
|
|
+ }
|
|
|
+ if (xpl == null)
|
|
|
+ x = xp;
|
|
|
+ else {
|
|
|
+ TreeNode<K,V> sl = xpl.left, sr = xpl.right;
|
|
|
+ if ((sl == null || !sl.red) &&
|
|
|
+ (sr == null || !sr.red)) {
|
|
|
+ xpl.red = true;
|
|
|
+ x = xp;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (sl == null || !sl.red) {
|
|
|
+ if (sr != null)
|
|
|
+ sr.red = false;
|
|
|
+ xpl.red = true;
|
|
|
+ root = rotateLeft(root, xpl);
|
|
|
+ xpl = (xp = x.parent) == null ?
|
|
|
+ null : xp.left;
|
|
|
+ }
|
|
|
+ if (xpl != null) {
|
|
|
+ xpl.red = (xp == null) ? false : xp.red;
|
|
|
+ if ((sl = xpl.left) != null)
|
|
|
+ sl.red = false;
|
|
|
+ }
|
|
|
+ if (xp != null) {
|
|
|
+ xp.red = false;
|
|
|
+ root = rotateRight(root, xp);
|
|
|
+ }
|
|
|
+ x = root;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Recursive invariant check
|
|
|
+ */
|
|
|
+ static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
|
|
|
+ TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
|
|
|
+ tb = t.prev, tn = (TreeNode<K,V>)t.next;
|
|
|
+ if (tb != null && tb.next != t)
|
|
|
+ return false;
|
|
|
+ if (tn != null && tn.prev != t)
|
|
|
+ return false;
|
|
|
+ if (tp != null && t != tp.left && t != tp.right)
|
|
|
+ return false;
|
|
|
+ if (tl != null && (tl.parent != t || tl.hash > t.hash))
|
|
|
+ return false;
|
|
|
+ if (tr != null && (tr.parent != t || tr.hash < t.hash))
|
|
|
+ return false;
|
|
|
+ if (t.red && tl != null && tl.red && tr != null && tr.red)
|
|
|
+ return false;
|
|
|
+ if (tl != null && !checkInvariants(tl))
|
|
|
+ return false;
|
|
|
+ if (tr != null && !checkInvariants(tr))
|
|
|
+ return false;
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ private static final sun.misc.Unsafe U;
|
|
|
+ private static final long LOCKSTATE;
|
|
|
+ static {
|
|
|
+ try {
|
|
|
+ U = getUnsafe();
|
|
|
+ Class<?> k = TreeBin.class;
|
|
|
+ LOCKSTATE = U.objectFieldOffset
|
|
|
+ (k.getDeclaredField("lockState"));
|
|
|
+ } catch (Exception e) {
|
|
|
+ throw new Error(e);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ----------------Table Traversal -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Records the table, its length, and current traversal index for a
|
|
|
+ * traverser that must process a region of a forwarded table before
|
|
|
+ * proceeding with current table.
|
|
|
+ */
|
|
|
+ static final class TableStack<K,V> {
|
|
|
+ int length;
|
|
|
+ int index;
|
|
|
+ Node<K,V>[] tab;
|
|
|
+ TableStack<K,V> next;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Encapsulates traversal for methods such as containsValue; also
|
|
|
+ * serves as a base class for other iterators and spliterators.
|
|
|
+ *
|
|
|
+ * Method advance visits once each still-valid node that was
|
|
|
+ * reachable upon iterator construction. It might miss some that
|
|
|
+ * were added to a bin after the bin was visited, which is OK wrt
|
|
|
+ * consistency guarantees. Maintaining this property in the face
|
|
|
+ * of possible ongoing resizes requires a fair amount of
|
|
|
+ * bookkeeping state that is difficult to optimize away amidst
|
|
|
+ * volatile accesses. Even so, traversal maintains reasonable
|
|
|
+ * throughput.
|
|
|
+ *
|
|
|
+ * Normally, iteration proceeds bin-by-bin traversing lists.
|
|
|
+ * However, if the table has been resized, then all future steps
|
|
|
+ * must traverse both the bin at the current index as well as at
|
|
|
+ * (index + baseSize); and so on for further resizings. To
|
|
|
+ * paranoically cope with potential sharing by users of iterators
|
|
|
+ * across threads, iteration terminates if a bounds checks fails
|
|
|
+ * for a table read.
|
|
|
+ */
|
|
|
+ static class Traverser<K,V> {
|
|
|
+ Node<K,V>[] tab; // current table; updated if resized
|
|
|
+ Node<K,V> next; // the next entry to use
|
|
|
+ TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
|
|
|
+ int index; // index of bin to use next
|
|
|
+ int baseIndex; // current index of initial table
|
|
|
+ int baseLimit; // index bound for initial table
|
|
|
+ final int baseSize; // initial table size
|
|
|
+
|
|
|
+ Traverser(Node<K,V>[] tab, int size, int index, int limit) {
|
|
|
+ this.tab = tab;
|
|
|
+ this.baseSize = size;
|
|
|
+ this.baseIndex = this.index = index;
|
|
|
+ this.baseLimit = limit;
|
|
|
+ this.next = null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Advances if possible, returning next valid node, or null if none.
|
|
|
+ */
|
|
|
+ final Node<K,V> advance() {
|
|
|
+ Node<K,V> e;
|
|
|
+ if ((e = next) != null)
|
|
|
+ e = e.next;
|
|
|
+ for (;;) {
|
|
|
+ Node<K,V>[] t; int i, n; // must use locals in checks
|
|
|
+ if (e != null)
|
|
|
+ return next = e;
|
|
|
+ if (baseIndex >= baseLimit || (t = tab) == null ||
|
|
|
+ (n = t.length) <= (i = index) || i < 0)
|
|
|
+ return next = null;
|
|
|
+ if ((e = tabAt(t, i)) != null && e.hash < 0) {
|
|
|
+ if (e instanceof ForwardingNode) {
|
|
|
+ tab = ((ForwardingNode<K,V>)e).nextTable;
|
|
|
+ e = null;
|
|
|
+ pushState(t, i, n);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ else if (e instanceof TreeBin)
|
|
|
+ e = ((TreeBin<K,V>)e).first;
|
|
|
+ else
|
|
|
+ e = null;
|
|
|
+ }
|
|
|
+ if (stack != null)
|
|
|
+ recoverState(n);
|
|
|
+ else if ((index = i + baseSize) >= n)
|
|
|
+ index = ++baseIndex; // visit upper slots if present
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Saves traversal state upon encountering a forwarding node.
|
|
|
+ */
|
|
|
+ private void pushState(Node<K,V>[] t, int i, int n) {
|
|
|
+ TableStack<K,V> s = spare; // reuse if possible
|
|
|
+ if (s != null)
|
|
|
+ spare = s.next;
|
|
|
+ else
|
|
|
+ s = new TableStack<K,V>();
|
|
|
+ s.tab = t;
|
|
|
+ s.length = n;
|
|
|
+ s.index = i;
|
|
|
+ s.next = stack;
|
|
|
+ stack = s;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Possibly pops traversal state.
|
|
|
+ *
|
|
|
+ * @param n length of current table
|
|
|
+ */
|
|
|
+ private void recoverState(int n) {
|
|
|
+ TableStack<K,V> s; int len;
|
|
|
+ while ((s = stack) != null && (index += (len = s.length)) >= n) {
|
|
|
+ n = len;
|
|
|
+ index = s.index;
|
|
|
+ tab = s.tab;
|
|
|
+ s.tab = null;
|
|
|
+ TableStack<K,V> next = s.next;
|
|
|
+ s.next = spare; // save for reuse
|
|
|
+ stack = next;
|
|
|
+ spare = s;
|
|
|
+ }
|
|
|
+ if (s == null && (index += baseSize) >= n)
|
|
|
+ index = ++baseIndex;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Base of key, value, and entry Iterators. Adds fields to
|
|
|
+ * Traverser to support iterator.remove.
|
|
|
+ */
|
|
|
+ static class BaseIterator<K,V> extends Traverser<K,V> {
|
|
|
+ final ConcurrentHashMapV8<K,V> map;
|
|
|
+ Node<K,V> lastReturned;
|
|
|
+ BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
|
|
|
+ ConcurrentHashMapV8<K,V> map) {
|
|
|
+ super(tab, size, index, limit);
|
|
|
+ this.map = map;
|
|
|
+ advance();
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean hasNext() { return next != null; }
|
|
|
+ public final boolean hasMoreElements() { return next != null; }
|
|
|
+
|
|
|
+ public final void remove() {
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = lastReturned) == null)
|
|
|
+ throw new IllegalStateException();
|
|
|
+ lastReturned = null;
|
|
|
+ map.replaceNode(p.key, null, null);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static final class KeyIterator<K,V> extends BaseIterator<K,V>
|
|
|
+ implements Iterator<K>, Enumeration<K> {
|
|
|
+ KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
|
|
|
+ ConcurrentHashMapV8<K,V> map) {
|
|
|
+ super(tab, index, size, limit, map);
|
|
|
+ }
|
|
|
+
|
|
|
+ public final K next() {
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = next) == null)
|
|
|
+ throw new NoSuchElementException();
|
|
|
+ K k = p.key;
|
|
|
+ lastReturned = p;
|
|
|
+ advance();
|
|
|
+ return k;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final K nextElement() { return next(); }
|
|
|
+ }
|
|
|
+
|
|
|
+ static final class ValueIterator<K,V> extends BaseIterator<K,V>
|
|
|
+ implements Iterator<V>, Enumeration<V> {
|
|
|
+ ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
|
|
|
+ ConcurrentHashMapV8<K,V> map) {
|
|
|
+ super(tab, index, size, limit, map);
|
|
|
+ }
|
|
|
+
|
|
|
+ public final V next() {
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = next) == null)
|
|
|
+ throw new NoSuchElementException();
|
|
|
+ V v = p.val;
|
|
|
+ lastReturned = p;
|
|
|
+ advance();
|
|
|
+ return v;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final V nextElement() { return next(); }
|
|
|
+ }
|
|
|
+
|
|
|
+ static final class EntryIterator<K,V> extends BaseIterator<K,V>
|
|
|
+ implements Iterator<Entry<K,V>> {
|
|
|
+ EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
|
|
|
+ ConcurrentHashMapV8<K,V> map) {
|
|
|
+ super(tab, index, size, limit, map);
|
|
|
+ }
|
|
|
+
|
|
|
+ public final Entry<K,V> next() {
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = next) == null)
|
|
|
+ throw new NoSuchElementException();
|
|
|
+ K k = p.key;
|
|
|
+ V v = p.val;
|
|
|
+ lastReturned = p;
|
|
|
+ advance();
|
|
|
+ return new MapEntry<K,V>(k, v, map);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Exported Entry for EntryIterator
|
|
|
+ */
|
|
|
+ static final class MapEntry<K,V> implements Entry<K,V> {
|
|
|
+ final K key; // non-null
|
|
|
+ V val; // non-null
|
|
|
+ final ConcurrentHashMapV8<K,V> map;
|
|
|
+ MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
|
|
|
+ this.key = key;
|
|
|
+ this.val = val;
|
|
|
+ this.map = map;
|
|
|
+ }
|
|
|
+ public K getKey() { return key; }
|
|
|
+ public V getValue() { return val; }
|
|
|
+ public int hashCode() { return key.hashCode() ^ val.hashCode(); }
|
|
|
+ public String toString() { return key + "=" + val; }
|
|
|
+
|
|
|
+ public boolean equals(Object o) {
|
|
|
+ Object k, v; Entry<?,?> e;
|
|
|
+ return ((o instanceof Map.Entry) &&
|
|
|
+ (k = (e = (Entry<?,?>)o).getKey()) != null &&
|
|
|
+ (v = e.getValue()) != null &&
|
|
|
+ (k == key || k.equals(key)) &&
|
|
|
+ (v == val || v.equals(val)));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Sets our entry's value and writes through to the map. The
|
|
|
+ * value to return is somewhat arbitrary here. Since we do not
|
|
|
+ * necessarily track asynchronous changes, the most recent
|
|
|
+ * "previous" value could be different from what we return (or
|
|
|
+ * could even have been removed, in which case the put will
|
|
|
+ * re-establish). We do not and cannot guarantee more.
|
|
|
+ */
|
|
|
+ public V setValue(V value) {
|
|
|
+ if (value == null) throw new NullPointerException();
|
|
|
+ V v = val;
|
|
|
+ val = value;
|
|
|
+ map.put(key, value);
|
|
|
+ return v;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static final class KeySpliterator<K,V> extends Traverser<K,V>
|
|
|
+ implements ConcurrentHashMapSpliterator<K> {
|
|
|
+ long est; // size estimate
|
|
|
+ KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
|
|
|
+ long est) {
|
|
|
+ super(tab, size, index, limit);
|
|
|
+ this.est = est;
|
|
|
+ }
|
|
|
+
|
|
|
+ public ConcurrentHashMapSpliterator<K> trySplit() {
|
|
|
+ int i, f, h;
|
|
|
+ return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
|
|
|
+ new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
|
|
|
+ f, est >>>= 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ public void forEachRemaining(Action<? super K> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ for (Node<K,V> p; (p = advance()) != null;)
|
|
|
+ action.apply(p.key);
|
|
|
+ }
|
|
|
+
|
|
|
+ public boolean tryAdvance(Action<? super K> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = advance()) == null)
|
|
|
+ return false;
|
|
|
+ action.apply(p.key);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ public long estimateSize() { return est; }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ static final class ValueSpliterator<K,V> extends Traverser<K,V>
|
|
|
+ implements ConcurrentHashMapSpliterator<V> {
|
|
|
+ long est; // size estimate
|
|
|
+ ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
|
|
|
+ long est) {
|
|
|
+ super(tab, size, index, limit);
|
|
|
+ this.est = est;
|
|
|
+ }
|
|
|
+
|
|
|
+ public ConcurrentHashMapSpliterator<V> trySplit() {
|
|
|
+ int i, f, h;
|
|
|
+ return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
|
|
|
+ new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
|
|
|
+ f, est >>>= 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ public void forEachRemaining(Action<? super V> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ for (Node<K,V> p; (p = advance()) != null;)
|
|
|
+ action.apply(p.val);
|
|
|
+ }
|
|
|
+
|
|
|
+ public boolean tryAdvance(Action<? super V> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = advance()) == null)
|
|
|
+ return false;
|
|
|
+ action.apply(p.val);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ public long estimateSize() { return est; }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ static final class EntrySpliterator<K,V> extends Traverser<K,V>
|
|
|
+ implements ConcurrentHashMapSpliterator<Entry<K,V>> {
|
|
|
+ final ConcurrentHashMapV8<K,V> map; // To export MapEntry
|
|
|
+ long est; // size estimate
|
|
|
+ EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
|
|
|
+ long est, ConcurrentHashMapV8<K,V> map) {
|
|
|
+ super(tab, size, index, limit);
|
|
|
+ this.map = map;
|
|
|
+ this.est = est;
|
|
|
+ }
|
|
|
+
|
|
|
+ public ConcurrentHashMapSpliterator<Entry<K,V>> trySplit() {
|
|
|
+ int i, f, h;
|
|
|
+ return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
|
|
|
+ new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
|
|
|
+ f, est >>>= 1, map);
|
|
|
+ }
|
|
|
+
|
|
|
+ public void forEachRemaining(Action<? super Entry<K,V>> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ action.apply(new MapEntry<K,V>(p.key, p.val, map));
|
|
|
+ }
|
|
|
+
|
|
|
+ public boolean tryAdvance(Action<? super Entry<K,V>> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = advance()) == null)
|
|
|
+ return false;
|
|
|
+ action.apply(new MapEntry<K,V>(p.key, p.val, map));
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ public long estimateSize() { return est; }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // Parallel bulk operations
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Computes initial batch value for bulk tasks. The returned value
|
|
|
+ * is approximately exp2 of the number of times (minus one) to
|
|
|
+ * split task by two before executing leaf action. This value is
|
|
|
+ * faster to compute and more convenient to use as a guide to
|
|
|
+ * splitting than is the depth, since it is used while dividing by
|
|
|
+ * two anyway.
|
|
|
+ */
|
|
|
+ final int batchFor(long b) {
|
|
|
+ long n;
|
|
|
+ if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
|
|
|
+ return 0;
|
|
|
+ int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
|
|
|
+ return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each (key, value).
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public void forEach(long parallelismThreshold,
|
|
|
+ BiAction<? super K,? super V> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ new ForEachMappingTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each non-null transformation
|
|
|
+ * of each (key, value).
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case the action is not applied)
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> void forEach(long parallelismThreshold,
|
|
|
+ BiFun<? super K, ? super V, ? extends U> transformer,
|
|
|
+ Action<? super U> action) {
|
|
|
+ if (transformer == null || action == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ new ForEachTransformedMappingTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ transformer, action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a non-null result from applying the given search
|
|
|
+ * function on each (key, value), or null if none. Upon
|
|
|
+ * success, further element processing is suppressed and the
|
|
|
+ * results of any other parallel invocations of the search
|
|
|
+ * function are ignored.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param searchFunction a function returning a non-null
|
|
|
+ * result on success, else null
|
|
|
+ * @return a non-null result from applying the given search
|
|
|
+ * function on each (key, value), or null if none
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U search(long parallelismThreshold,
|
|
|
+ BiFun<? super K, ? super V, ? extends U> searchFunction) {
|
|
|
+ if (searchFunction == null) throw new NullPointerException();
|
|
|
+ return new SearchMappingsTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ searchFunction, new AtomicReference<U>()).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs using the given reducer to
|
|
|
+ * combine values, or null if none.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case it is not combined)
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U reduce(long parallelismThreshold,
|
|
|
+ BiFun<? super K, ? super V, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceMappingsTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs using the given reducer to
|
|
|
+ * combine values, and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public double reduceToDouble(long parallelismThreshold,
|
|
|
+ ObjectByObjectToDouble<? super K, ? super V> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceMappingsToDoubleTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs using the given reducer to
|
|
|
+ * combine values, and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public long reduceToLong(long parallelismThreshold,
|
|
|
+ ObjectByObjectToLong<? super K, ? super V> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceMappingsToLongTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs using the given reducer to
|
|
|
+ * combine values, and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all (key, value) pairs
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public int reduceToInt(long parallelismThreshold,
|
|
|
+ ObjectByObjectToInt<? super K, ? super V> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceMappingsToIntTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each key.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public void forEachKey(long parallelismThreshold,
|
|
|
+ Action<? super K> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ new ForEachKeyTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each non-null transformation
|
|
|
+ * of each key.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case the action is not applied)
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> void forEachKey(long parallelismThreshold,
|
|
|
+ Fun<? super K, ? extends U> transformer,
|
|
|
+ Action<? super U> action) {
|
|
|
+ if (transformer == null || action == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ new ForEachTransformedKeyTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ transformer, action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a non-null result from applying the given search
|
|
|
+ * function on each key, or null if none. Upon success,
|
|
|
+ * further element processing is suppressed and the results of
|
|
|
+ * any other parallel invocations of the search function are
|
|
|
+ * ignored.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param searchFunction a function returning a non-null
|
|
|
+ * result on success, else null
|
|
|
+ * @return a non-null result from applying the given search
|
|
|
+ * function on each key, or null if none
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U searchKeys(long parallelismThreshold,
|
|
|
+ Fun<? super K, ? extends U> searchFunction) {
|
|
|
+ if (searchFunction == null) throw new NullPointerException();
|
|
|
+ return new SearchKeysTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ searchFunction, new AtomicReference<U>()).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating all keys using the given
|
|
|
+ * reducer to combine values, or null if none.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating all keys using the given
|
|
|
+ * reducer to combine values, or null if none
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public K reduceKeys(long parallelismThreshold,
|
|
|
+ BiFun<? super K, ? super K, ? extends K> reducer) {
|
|
|
+ if (reducer == null) throw new NullPointerException();
|
|
|
+ return new ReduceKeysTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all keys using the given reducer to combine values, or
|
|
|
+ * null if none.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case it is not combined)
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all keys
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U reduceKeys(long parallelismThreshold,
|
|
|
+ Fun<? super K, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceKeysTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all keys using the given reducer to combine values, and
|
|
|
+ * the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all keys
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public double reduceKeysToDouble(long parallelismThreshold,
|
|
|
+ ObjectToDouble<? super K> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceKeysToDoubleTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all keys using the given reducer to combine values, and
|
|
|
+ * the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all keys
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public long reduceKeysToLong(long parallelismThreshold,
|
|
|
+ ObjectToLong<? super K> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceKeysToLongTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all keys using the given reducer to combine values, and
|
|
|
+ * the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all keys
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public int reduceKeysToInt(long parallelismThreshold,
|
|
|
+ ObjectToInt<? super K> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceKeysToIntTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public void forEachValue(long parallelismThreshold,
|
|
|
+ Action<? super V> action) {
|
|
|
+ if (action == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ new ForEachValueTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each non-null transformation
|
|
|
+ * of each value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case the action is not applied)
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> void forEachValue(long parallelismThreshold,
|
|
|
+ Fun<? super V, ? extends U> transformer,
|
|
|
+ Action<? super U> action) {
|
|
|
+ if (transformer == null || action == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ new ForEachTransformedValueTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ transformer, action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a non-null result from applying the given search
|
|
|
+ * function on each value, or null if none. Upon success,
|
|
|
+ * further element processing is suppressed and the results of
|
|
|
+ * any other parallel invocations of the search function are
|
|
|
+ * ignored.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param searchFunction a function returning a non-null
|
|
|
+ * result on success, else null
|
|
|
+ * @return a non-null result from applying the given search
|
|
|
+ * function on each value, or null if none
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U searchValues(long parallelismThreshold,
|
|
|
+ Fun<? super V, ? extends U> searchFunction) {
|
|
|
+ if (searchFunction == null) throw new NullPointerException();
|
|
|
+ return new SearchValuesTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ searchFunction, new AtomicReference<U>()).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating all values using the
|
|
|
+ * given reducer to combine values, or null if none.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating all values
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public V reduceValues(long parallelismThreshold,
|
|
|
+ BiFun<? super V, ? super V, ? extends V> reducer) {
|
|
|
+ if (reducer == null) throw new NullPointerException();
|
|
|
+ return new ReduceValuesTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all values using the given reducer to combine values, or
|
|
|
+ * null if none.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case it is not combined)
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all values
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U reduceValues(long parallelismThreshold,
|
|
|
+ Fun<? super V, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceValuesTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all values using the given reducer to combine values,
|
|
|
+ * and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all values
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public double reduceValuesToDouble(long parallelismThreshold,
|
|
|
+ ObjectToDouble<? super V> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceValuesToDoubleTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all values using the given reducer to combine values,
|
|
|
+ * and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all values
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public long reduceValuesToLong(long parallelismThreshold,
|
|
|
+ ObjectToLong<? super V> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceValuesToLongTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all values using the given reducer to combine values,
|
|
|
+ * and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all values
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public int reduceValuesToInt(long parallelismThreshold,
|
|
|
+ ObjectToInt<? super V> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceValuesToIntTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each entry.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public void forEachEntry(long parallelismThreshold,
|
|
|
+ Action<? super Entry<K,V>> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Performs the given action for each non-null transformation
|
|
|
+ * of each entry.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case the action is not applied)
|
|
|
+ * @param action the action
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> void forEachEntry(long parallelismThreshold,
|
|
|
+ Fun<Entry<K,V>, ? extends U> transformer,
|
|
|
+ Action<? super U> action) {
|
|
|
+ if (transformer == null || action == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ new ForEachTransformedEntryTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ transformer, action).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a non-null result from applying the given search
|
|
|
+ * function on each entry, or null if none. Upon success,
|
|
|
+ * further element processing is suppressed and the results of
|
|
|
+ * any other parallel invocations of the search function are
|
|
|
+ * ignored.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param searchFunction a function returning a non-null
|
|
|
+ * result on success, else null
|
|
|
+ * @return a non-null result from applying the given search
|
|
|
+ * function on each entry, or null if none
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U searchEntries(long parallelismThreshold,
|
|
|
+ Fun<Entry<K,V>, ? extends U> searchFunction) {
|
|
|
+ if (searchFunction == null) throw new NullPointerException();
|
|
|
+ return new SearchEntriesTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ searchFunction, new AtomicReference<U>()).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating all entries using the
|
|
|
+ * given reducer to combine values, or null if none.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating all entries
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public Entry<K,V> reduceEntries(long parallelismThreshold,
|
|
|
+ BiFun<Entry<K,V>, Entry<K,V>, ? extends Entry<K,V>> reducer) {
|
|
|
+ if (reducer == null) throw new NullPointerException();
|
|
|
+ return new ReduceEntriesTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all entries using the given reducer to combine values,
|
|
|
+ * or null if none.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element, or null if there is no transformation (in
|
|
|
+ * which case it is not combined)
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all entries
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public <U> U reduceEntries(long parallelismThreshold,
|
|
|
+ Fun<Entry<K,V>, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceEntriesTask<K,V,U>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all entries using the given reducer to combine values,
|
|
|
+ * and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all entries
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public double reduceEntriesToDouble(long parallelismThreshold,
|
|
|
+ ObjectToDouble<Entry<K,V>> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceEntriesToDoubleTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all entries using the given reducer to combine values,
|
|
|
+ * and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all entries
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public long reduceEntriesToLong(long parallelismThreshold,
|
|
|
+ ObjectToLong<Entry<K,V>> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceEntriesToLongTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the result of accumulating the given transformation
|
|
|
+ * of all entries using the given reducer to combine values,
|
|
|
+ * and the given basis as an identity value.
|
|
|
+ *
|
|
|
+ * @param parallelismThreshold the (estimated) number of elements
|
|
|
+ * needed for this operation to be executed in parallel
|
|
|
+ * @param transformer a function returning the transformation
|
|
|
+ * for an element
|
|
|
+ * @param basis the identity (initial default value) for the reduction
|
|
|
+ * @param reducer a commutative associative combining function
|
|
|
+ * @return the result of accumulating the given transformation
|
|
|
+ * of all entries
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public int reduceEntriesToInt(long parallelismThreshold,
|
|
|
+ ObjectToInt<Entry<K,V>> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ if (transformer == null || reducer == null)
|
|
|
+ throw new NullPointerException();
|
|
|
+ return new MapReduceEntriesToIntTask<K,V>
|
|
|
+ (null, batchFor(parallelismThreshold), 0, 0, table,
|
|
|
+ null, transformer, basis, reducer).invoke();
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ /* ----------------Views -------------- */
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Base class for views.
|
|
|
+ */
|
|
|
+ abstract static class CollectionView<K,V,E>
|
|
|
+ implements Collection<E>, Serializable {
|
|
|
+ private static final long serialVersionUID = 7249069246763182397L;
|
|
|
+ final ConcurrentHashMapV8<K,V> map;
|
|
|
+ CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the map backing this view.
|
|
|
+ *
|
|
|
+ * @return the map backing this view
|
|
|
+ */
|
|
|
+ public ConcurrentHashMapV8<K,V> getMap() { return map; }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Removes all of the elements from this view, by removing all
|
|
|
+ * the mappings from the map backing this view.
|
|
|
+ */
|
|
|
+ public final void clear() { map.clear(); }
|
|
|
+ public final int size() { return map.size(); }
|
|
|
+ public final boolean isEmpty() { return map.isEmpty(); }
|
|
|
+
|
|
|
+ // implementations below rely on concrete classes supplying these
|
|
|
+ // abstract methods
|
|
|
+ /**
|
|
|
+ * Returns a "weakly consistent" iterator that will never
|
|
|
+ * throw {@link ConcurrentModificationException}, and
|
|
|
+ * guarantees to traverse elements as they existed upon
|
|
|
+ * construction of the iterator, and may (but is not
|
|
|
+ * guaranteed to) reflect any modifications subsequent to
|
|
|
+ * construction.
|
|
|
+ */
|
|
|
+ public abstract Iterator<E> iterator();
|
|
|
+ public abstract boolean contains(Object o);
|
|
|
+ public abstract boolean remove(Object o);
|
|
|
+
|
|
|
+ private static final String oomeMsg = "Required array size too large";
|
|
|
+
|
|
|
+ public final Object[] toArray() {
|
|
|
+ long sz = map.mappingCount();
|
|
|
+ if (sz > MAX_ARRAY_SIZE)
|
|
|
+ throw new OutOfMemoryError(oomeMsg);
|
|
|
+ int n = (int)sz;
|
|
|
+ Object[] r = new Object[n];
|
|
|
+ int i = 0;
|
|
|
+ for (E e : this) {
|
|
|
+ if (i == n) {
|
|
|
+ if (n >= MAX_ARRAY_SIZE)
|
|
|
+ throw new OutOfMemoryError(oomeMsg);
|
|
|
+ if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
|
|
|
+ n = MAX_ARRAY_SIZE;
|
|
|
+ else
|
|
|
+ n += (n >>> 1) + 1;
|
|
|
+ r = Arrays.copyOf(r, n);
|
|
|
+ }
|
|
|
+ r[i++] = e;
|
|
|
+ }
|
|
|
+ return (i == n) ? r : Arrays.copyOf(r, i);
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("unchecked")
|
|
|
+ public final <T> T[] toArray(T[] a) {
|
|
|
+ long sz = map.mappingCount();
|
|
|
+ if (sz > MAX_ARRAY_SIZE)
|
|
|
+ throw new OutOfMemoryError(oomeMsg);
|
|
|
+ int m = (int)sz;
|
|
|
+ T[] r = (a.length >= m) ? a :
|
|
|
+ (T[])java.lang.reflect.Array
|
|
|
+ .newInstance(a.getClass().getComponentType(), m);
|
|
|
+ int n = r.length;
|
|
|
+ int i = 0;
|
|
|
+ for (E e : this) {
|
|
|
+ if (i == n) {
|
|
|
+ if (n >= MAX_ARRAY_SIZE)
|
|
|
+ throw new OutOfMemoryError(oomeMsg);
|
|
|
+ if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
|
|
|
+ n = MAX_ARRAY_SIZE;
|
|
|
+ else
|
|
|
+ n += (n >>> 1) + 1;
|
|
|
+ r = Arrays.copyOf(r, n);
|
|
|
+ }
|
|
|
+ r[i++] = (T)e;
|
|
|
+ }
|
|
|
+ if (a == r && i < n) {
|
|
|
+ r[i] = null; // null-terminate
|
|
|
+ return r;
|
|
|
+ }
|
|
|
+ return (i == n) ? r : Arrays.copyOf(r, i);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a string representation of this collection.
|
|
|
+ * The string representation consists of the string representations
|
|
|
+ * of the collection's elements in the order they are returned by
|
|
|
+ * its iterator, enclosed in square brackets ({@code "[]"}).
|
|
|
+ * Adjacent elements are separated by the characters {@code ", "}
|
|
|
+ * (comma and space). Elements are converted to strings as by
|
|
|
+ * {@link String#valueOf(Object)}.
|
|
|
+ *
|
|
|
+ * @return a string representation of this collection
|
|
|
+ */
|
|
|
+ public final String toString() {
|
|
|
+ StringBuilder sb = new StringBuilder();
|
|
|
+ sb.append('[');
|
|
|
+ Iterator<E> it = iterator();
|
|
|
+ if (it.hasNext()) {
|
|
|
+ for (;;) {
|
|
|
+ Object e = it.next();
|
|
|
+ sb.append(e == this ? "(this Collection)" : e);
|
|
|
+ if (!it.hasNext())
|
|
|
+ break;
|
|
|
+ sb.append(',').append(' ');
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return sb.append(']').toString();
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean containsAll(Collection<?> c) {
|
|
|
+ if (c != this) {
|
|
|
+ for (Object e : c) {
|
|
|
+ if (e == null || !contains(e))
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean removeAll(Collection<?> c) {
|
|
|
+ boolean modified = false;
|
|
|
+ for (Iterator<E> it = iterator(); it.hasNext();) {
|
|
|
+ if (c.contains(it.next())) {
|
|
|
+ it.remove();
|
|
|
+ modified = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return modified;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean retainAll(Collection<?> c) {
|
|
|
+ boolean modified = false;
|
|
|
+ for (Iterator<E> it = iterator(); it.hasNext();) {
|
|
|
+ if (!c.contains(it.next())) {
|
|
|
+ it.remove();
|
|
|
+ modified = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return modified;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
|
|
|
+ * which additions may optionally be enabled by mapping to a
|
|
|
+ * common value. This class cannot be directly instantiated.
|
|
|
+ * See {@link #keySet() keySet()},
|
|
|
+ * {@link #keySet(Object) keySet(V)},
|
|
|
+ * {@link #newKeySet() newKeySet()},
|
|
|
+ * {@link #newKeySet(int) newKeySet(int)}.
|
|
|
+ *
|
|
|
+ * @since 1.8
|
|
|
+ */
|
|
|
+ public static class KeySetView<K,V> extends CollectionView<K,V,K>
|
|
|
+ implements Set<K>, Serializable {
|
|
|
+ private static final long serialVersionUID = 7249069246763182397L;
|
|
|
+ private final V value;
|
|
|
+ KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
|
|
|
+ super(map);
|
|
|
+ this.value = value;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the default mapped value for additions,
|
|
|
+ * or {@code null} if additions are not supported.
|
|
|
+ *
|
|
|
+ * @return the default mapped value for additions, or {@code null}
|
|
|
+ * if not supported
|
|
|
+ */
|
|
|
+ public V getMappedValue() { return value; }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * {@inheritDoc}
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ */
|
|
|
+ public boolean contains(Object o) { return map.containsKey(o); }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Removes the key from this map view, by removing the key (and its
|
|
|
+ * corresponding value) from the backing map. This method does
|
|
|
+ * nothing if the key is not in the map.
|
|
|
+ *
|
|
|
+ * @param o the key to be removed from the backing map
|
|
|
+ * @return {@code true} if the backing map contained the specified key
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ */
|
|
|
+ public boolean remove(Object o) { return map.remove(o) != null; }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @return an iterator over the keys of the backing map
|
|
|
+ */
|
|
|
+ public Iterator<K> iterator() {
|
|
|
+ Node<K,V>[] t;
|
|
|
+ ConcurrentHashMapV8<K,V> m = map;
|
|
|
+ int f = (t = m.table) == null ? 0 : t.length;
|
|
|
+ return new KeyIterator<K,V>(t, f, 0, f, m);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Adds the specified key to this set view by mapping the key to
|
|
|
+ * the default mapped value in the backing map, if defined.
|
|
|
+ *
|
|
|
+ * @param e key to be added
|
|
|
+ * @return {@code true} if this set changed as a result of the call
|
|
|
+ * @throws NullPointerException if the specified key is null
|
|
|
+ * @throws UnsupportedOperationException if no default mapped value
|
|
|
+ * for additions was provided
|
|
|
+ */
|
|
|
+ public boolean add(K e) {
|
|
|
+ V v;
|
|
|
+ if ((v = value) == null)
|
|
|
+ throw new UnsupportedOperationException();
|
|
|
+ return map.putVal(e, v, true) == null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Adds all of the elements in the specified collection to this set,
|
|
|
+ * as if by calling {@link #add} on each one.
|
|
|
+ *
|
|
|
+ * @param c the elements to be inserted into this set
|
|
|
+ * @return {@code true} if this set changed as a result of the call
|
|
|
+ * @throws NullPointerException if the collection or any of its
|
|
|
+ * elements are {@code null}
|
|
|
+ * @throws UnsupportedOperationException if no default mapped value
|
|
|
+ * for additions was provided
|
|
|
+ */
|
|
|
+ public boolean addAll(Collection<? extends K> c) {
|
|
|
+ boolean added = false;
|
|
|
+ V v;
|
|
|
+ if ((v = value) == null)
|
|
|
+ throw new UnsupportedOperationException();
|
|
|
+ for (K e : c) {
|
|
|
+ if (map.putVal(e, v, true) == null)
|
|
|
+ added = true;
|
|
|
+ }
|
|
|
+ return added;
|
|
|
+ }
|
|
|
+
|
|
|
+ public int hashCode() {
|
|
|
+ int h = 0;
|
|
|
+ for (K e : this)
|
|
|
+ h += e.hashCode();
|
|
|
+ return h;
|
|
|
+ }
|
|
|
+
|
|
|
+ public boolean equals(Object o) {
|
|
|
+ Set<?> c;
|
|
|
+ return ((o instanceof Set) &&
|
|
|
+ ((c = (Set<?>)o) == this ||
|
|
|
+ (containsAll(c) && c.containsAll(this))));
|
|
|
+ }
|
|
|
+
|
|
|
+ //calvin: change the name to avoid conflict in JDK8
|
|
|
+ public ConcurrentHashMapSpliterator<K> spliterator2() {
|
|
|
+ Node<K,V>[] t;
|
|
|
+ ConcurrentHashMapV8<K,V> m = map;
|
|
|
+ long n = m.sumCount();
|
|
|
+ int f = (t = m.table) == null ? 0 : t.length;
|
|
|
+ return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
|
|
|
+ }
|
|
|
+
|
|
|
+ public void forEach(Action<? super K> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = map.table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; )
|
|
|
+ action.apply(p.key);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A view of a ConcurrentHashMapV8 as a {@link Collection} of
|
|
|
+ * values, in which additions are disabled. This class cannot be
|
|
|
+ * directly instantiated. See {@link #values()}.
|
|
|
+ */
|
|
|
+ static final class ValuesView<K,V> extends CollectionView<K,V,V>
|
|
|
+ implements Collection<V>, Serializable {
|
|
|
+ private static final long serialVersionUID = 2249069246763182397L;
|
|
|
+ ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
|
|
|
+ public final boolean contains(Object o) {
|
|
|
+ return map.containsValue(o);
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean remove(Object o) {
|
|
|
+ if (o != null) {
|
|
|
+ for (Iterator<V> it = iterator(); it.hasNext();) {
|
|
|
+ if (o.equals(it.next())) {
|
|
|
+ it.remove();
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final Iterator<V> iterator() {
|
|
|
+ ConcurrentHashMapV8<K,V> m = map;
|
|
|
+ Node<K,V>[] t;
|
|
|
+ int f = (t = m.table) == null ? 0 : t.length;
|
|
|
+ return new ValueIterator<K,V>(t, f, 0, f, m);
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean add(V e) {
|
|
|
+ throw new UnsupportedOperationException();
|
|
|
+ }
|
|
|
+ public final boolean addAll(Collection<? extends V> c) {
|
|
|
+ throw new UnsupportedOperationException();
|
|
|
+ }
|
|
|
+
|
|
|
+ //calvin: change the name to avoid conflict in JDK8
|
|
|
+ public ConcurrentHashMapSpliterator<V> spliterator2() {
|
|
|
+ Node<K,V>[] t;
|
|
|
+ ConcurrentHashMapV8<K,V> m = map;
|
|
|
+ long n = m.sumCount();
|
|
|
+ int f = (t = m.table) == null ? 0 : t.length;
|
|
|
+ return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
|
|
|
+ }
|
|
|
+
|
|
|
+ public void forEach(Action<? super V> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = map.table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; )
|
|
|
+ action.apply(p.val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
|
|
|
+ * entries. This class cannot be directly instantiated. See
|
|
|
+ * {@link #entrySet()}.
|
|
|
+ */
|
|
|
+ static final class EntrySetView<K,V> extends CollectionView<K,V,Entry<K,V>>
|
|
|
+ implements Set<Entry<K,V>>, Serializable {
|
|
|
+ private static final long serialVersionUID = 2249069246763182397L;
|
|
|
+ EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
|
|
|
+
|
|
|
+ public boolean contains(Object o) {
|
|
|
+ Object k, v, r; Entry<?,?> e;
|
|
|
+ return ((o instanceof Map.Entry) &&
|
|
|
+ (k = (e = (Entry<?,?>)o).getKey()) != null &&
|
|
|
+ (r = map.get(k)) != null &&
|
|
|
+ (v = e.getValue()) != null &&
|
|
|
+ (v == r || v.equals(r)));
|
|
|
+ }
|
|
|
+
|
|
|
+ public boolean remove(Object o) {
|
|
|
+ Object k, v; Entry<?,?> e;
|
|
|
+ return ((o instanceof Map.Entry) &&
|
|
|
+ (k = (e = (Entry<?,?>)o).getKey()) != null &&
|
|
|
+ (v = e.getValue()) != null &&
|
|
|
+ map.remove(k, v));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @return an iterator over the entries of the backing map
|
|
|
+ */
|
|
|
+ public Iterator<Entry<K,V>> iterator() {
|
|
|
+ ConcurrentHashMapV8<K,V> m = map;
|
|
|
+ Node<K,V>[] t;
|
|
|
+ int f = (t = m.table) == null ? 0 : t.length;
|
|
|
+ return new EntryIterator<K,V>(t, f, 0, f, m);
|
|
|
+ }
|
|
|
+
|
|
|
+ public boolean add(Entry<K,V> e) {
|
|
|
+ return map.putVal(e.getKey(), e.getValue(), false) == null;
|
|
|
+ }
|
|
|
+
|
|
|
+ public boolean addAll(Collection<? extends Entry<K,V>> c) {
|
|
|
+ boolean added = false;
|
|
|
+ for (Entry<K,V> e : c) {
|
|
|
+ if (add(e))
|
|
|
+ added = true;
|
|
|
+ }
|
|
|
+ return added;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final int hashCode() {
|
|
|
+ int h = 0;
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = map.table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; ) {
|
|
|
+ h += p.hashCode();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return h;
|
|
|
+ }
|
|
|
+
|
|
|
+ public final boolean equals(Object o) {
|
|
|
+ Set<?> c;
|
|
|
+ return ((o instanceof Set) &&
|
|
|
+ ((c = (Set<?>)o) == this ||
|
|
|
+ (containsAll(c) && c.containsAll(this))));
|
|
|
+ }
|
|
|
+
|
|
|
+ //calvin: change the name to avoid conflict in JDK8
|
|
|
+ public ConcurrentHashMapSpliterator<Entry<K,V>> spliterator2() {
|
|
|
+ Node<K,V>[] t;
|
|
|
+ ConcurrentHashMapV8<K,V> m = map;
|
|
|
+ long n = m.sumCount();
|
|
|
+ int f = (t = m.table) == null ? 0 : t.length;
|
|
|
+ return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
|
|
|
+ }
|
|
|
+
|
|
|
+ public void forEach(Action<? super Entry<K,V>> action) {
|
|
|
+ if (action == null) throw new NullPointerException();
|
|
|
+ Node<K,V>[] t;
|
|
|
+ if ((t = map.table) != null) {
|
|
|
+ Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
|
|
+ for (Node<K,V> p; (p = it.advance()) != null; )
|
|
|
+ action.apply(new MapEntry<K,V>(p.key, p.val, map));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // -------------------------------------------------------
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Base class for bulk tasks. Repeats some fields and code from
|
|
|
+ * class Traverser, because we need to subclass CountedCompleter.
|
|
|
+ */
|
|
|
+ abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
|
|
|
+ Node<K,V>[] tab; // same as Traverser
|
|
|
+ Node<K,V> next;
|
|
|
+ int index;
|
|
|
+ int baseIndex;
|
|
|
+ int baseLimit;
|
|
|
+ final int baseSize;
|
|
|
+ int batch; // split control
|
|
|
+
|
|
|
+ BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
|
|
|
+ super(par);
|
|
|
+ this.batch = b;
|
|
|
+ this.index = this.baseIndex = i;
|
|
|
+ if ((this.tab = t) == null)
|
|
|
+ this.baseSize = this.baseLimit = 0;
|
|
|
+ else if (par == null)
|
|
|
+ this.baseSize = this.baseLimit = t.length;
|
|
|
+ else {
|
|
|
+ this.baseLimit = f;
|
|
|
+ this.baseSize = par.baseSize;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Same as Traverser version
|
|
|
+ */
|
|
|
+ final Node<K,V> advance() {
|
|
|
+ Node<K,V> e;
|
|
|
+ if ((e = next) != null)
|
|
|
+ e = e.next;
|
|
|
+ for (;;) {
|
|
|
+ Node<K,V>[] t; int i, n; K ek; // must use locals in checks
|
|
|
+ if (e != null)
|
|
|
+ return next = e;
|
|
|
+ if (baseIndex >= baseLimit || (t = tab) == null ||
|
|
|
+ (n = t.length) <= (i = index) || i < 0)
|
|
|
+ return next = null;
|
|
|
+ if ((e = tabAt(t, index)) != null && e.hash < 0) {
|
|
|
+ if (e instanceof ForwardingNode) {
|
|
|
+ tab = ((ForwardingNode<K,V>)e).nextTable;
|
|
|
+ e = null;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ else if (e instanceof TreeBin)
|
|
|
+ e = ((TreeBin<K,V>)e).first;
|
|
|
+ else
|
|
|
+ e = null;
|
|
|
+ }
|
|
|
+ if ((index += baseSize) >= n)
|
|
|
+ index = ++baseIndex; // visit upper slots if present
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Task classes. Coded in a regular but ugly format/style to
|
|
|
+ * simplify checks that each variant differs in the right way from
|
|
|
+ * others. The null screenings exist because compilers cannot tell
|
|
|
+ * that we've already null-checked task arguments, so we force
|
|
|
+ * simplest hoisted bypass to help avoid convoluted traps.
|
|
|
+ */
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachKeyTask<K,V>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final Action<? super K> action;
|
|
|
+ ForEachKeyTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Action<? super K> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final Action<? super K> action;
|
|
|
+ if ((action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachKeyTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null;)
|
|
|
+ action.apply(p.key);
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachValueTask<K,V>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final Action<? super V> action;
|
|
|
+ ForEachValueTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Action<? super V> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final Action<? super V> action;
|
|
|
+ if ((action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachValueTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null;)
|
|
|
+ action.apply(p.val);
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachEntryTask<K,V>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final Action<? super Entry<K,V>> action;
|
|
|
+ ForEachEntryTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Action<? super Entry<K,V>> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final Action<? super Entry<K,V>> action;
|
|
|
+ if ((action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachEntryTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ action.apply(p);
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachMappingTask<K,V>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final BiAction<? super K, ? super V> action;
|
|
|
+ ForEachMappingTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ BiAction<? super K,? super V> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final BiAction<? super K, ? super V> action;
|
|
|
+ if ((action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachMappingTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ action.apply(p.key, p.val);
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachTransformedKeyTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final Fun<? super K, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ ForEachTransformedKeyTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Fun<? super K, ? extends U> transformer, Action<? super U> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.transformer = transformer; this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<? super K, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachTransformedKeyTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ transformer, action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p.key)) != null)
|
|
|
+ action.apply(u);
|
|
|
+ }
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachTransformedValueTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final Fun<? super V, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ ForEachTransformedValueTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Fun<? super V, ? extends U> transformer, Action<? super U> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.transformer = transformer; this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<? super V, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachTransformedValueTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ transformer, action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p.val)) != null)
|
|
|
+ action.apply(u);
|
|
|
+ }
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachTransformedEntryTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final Fun<Entry<K,V>, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ ForEachTransformedEntryTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Fun<Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.transformer = transformer; this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<Entry<K,V>, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachTransformedEntryTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ transformer, action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p)) != null)
|
|
|
+ action.apply(u);
|
|
|
+ }
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ForEachTransformedMappingTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,Void> {
|
|
|
+ final BiFun<? super K, ? super V, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ ForEachTransformedMappingTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ BiFun<? super K, ? super V, ? extends U> transformer,
|
|
|
+ Action<? super U> action) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.transformer = transformer; this.action = action;
|
|
|
+ }
|
|
|
+ public final void compute() {
|
|
|
+ final BiFun<? super K, ? super V, ? extends U> transformer;
|
|
|
+ final Action<? super U> action;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (action = this.action) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ new ForEachTransformedMappingTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ transformer, action).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p.key, p.val)) != null)
|
|
|
+ action.apply(u);
|
|
|
+ }
|
|
|
+ propagateCompletion();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class SearchKeysTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final Fun<? super K, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ SearchKeysTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Fun<? super K, ? extends U> searchFunction,
|
|
|
+ AtomicReference<U> result) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.searchFunction = searchFunction; this.result = result;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result.get(); }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<? super K, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ if ((searchFunction = this.searchFunction) != null &&
|
|
|
+ (result = this.result) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ if (result.get() != null)
|
|
|
+ return;
|
|
|
+ addToPendingCount(1);
|
|
|
+ new SearchKeysTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ searchFunction, result).fork();
|
|
|
+ }
|
|
|
+ while (result.get() == null) {
|
|
|
+ U u;
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = advance()) == null) {
|
|
|
+ propagateCompletion();
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if ((u = searchFunction.apply(p.key)) != null) {
|
|
|
+ if (result.compareAndSet(null, u))
|
|
|
+ quietlyCompleteRoot();
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class SearchValuesTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final Fun<? super V, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ SearchValuesTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Fun<? super V, ? extends U> searchFunction,
|
|
|
+ AtomicReference<U> result) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.searchFunction = searchFunction; this.result = result;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result.get(); }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<? super V, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ if ((searchFunction = this.searchFunction) != null &&
|
|
|
+ (result = this.result) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ if (result.get() != null)
|
|
|
+ return;
|
|
|
+ addToPendingCount(1);
|
|
|
+ new SearchValuesTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ searchFunction, result).fork();
|
|
|
+ }
|
|
|
+ while (result.get() == null) {
|
|
|
+ U u;
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = advance()) == null) {
|
|
|
+ propagateCompletion();
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if ((u = searchFunction.apply(p.val)) != null) {
|
|
|
+ if (result.compareAndSet(null, u))
|
|
|
+ quietlyCompleteRoot();
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class SearchEntriesTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final Fun<Entry<K,V>, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ SearchEntriesTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ Fun<Entry<K,V>, ? extends U> searchFunction,
|
|
|
+ AtomicReference<U> result) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.searchFunction = searchFunction; this.result = result;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result.get(); }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<Entry<K,V>, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ if ((searchFunction = this.searchFunction) != null &&
|
|
|
+ (result = this.result) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ if (result.get() != null)
|
|
|
+ return;
|
|
|
+ addToPendingCount(1);
|
|
|
+ new SearchEntriesTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ searchFunction, result).fork();
|
|
|
+ }
|
|
|
+ while (result.get() == null) {
|
|
|
+ U u;
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = advance()) == null) {
|
|
|
+ propagateCompletion();
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if ((u = searchFunction.apply(p)) != null) {
|
|
|
+ if (result.compareAndSet(null, u))
|
|
|
+ quietlyCompleteRoot();
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class SearchMappingsTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final BiFun<? super K, ? super V, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ SearchMappingsTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ BiFun<? super K, ? super V, ? extends U> searchFunction,
|
|
|
+ AtomicReference<U> result) {
|
|
|
+ super(p, b, i, f, t);
|
|
|
+ this.searchFunction = searchFunction; this.result = result;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result.get(); }
|
|
|
+ public final void compute() {
|
|
|
+ final BiFun<? super K, ? super V, ? extends U> searchFunction;
|
|
|
+ final AtomicReference<U> result;
|
|
|
+ if ((searchFunction = this.searchFunction) != null &&
|
|
|
+ (result = this.result) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ if (result.get() != null)
|
|
|
+ return;
|
|
|
+ addToPendingCount(1);
|
|
|
+ new SearchMappingsTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ searchFunction, result).fork();
|
|
|
+ }
|
|
|
+ while (result.get() == null) {
|
|
|
+ U u;
|
|
|
+ Node<K,V> p;
|
|
|
+ if ((p = advance()) == null) {
|
|
|
+ propagateCompletion();
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if ((u = searchFunction.apply(p.key, p.val)) != null) {
|
|
|
+ if (result.compareAndSet(null, u))
|
|
|
+ quietlyCompleteRoot();
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ReduceKeysTask<K,V>
|
|
|
+ extends BulkTask<K,V,K> {
|
|
|
+ final BiFun<? super K, ? super K, ? extends K> reducer;
|
|
|
+ K result;
|
|
|
+ ReduceKeysTask<K,V> rights, nextRight;
|
|
|
+ ReduceKeysTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ ReduceKeysTask<K,V> nextRight,
|
|
|
+ BiFun<? super K, ? super K, ? extends K> reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final K getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final BiFun<? super K, ? super K, ? extends K> reducer;
|
|
|
+ if ((reducer = this.reducer) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new ReduceKeysTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, reducer)).fork();
|
|
|
+ }
|
|
|
+ K r = null;
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ K u = p.key;
|
|
|
+ r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
|
|
|
+ }
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
|
|
|
+ t = (ReduceKeysTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ K tr, sr;
|
|
|
+ if ((sr = s.result) != null)
|
|
|
+ t.result = (((tr = t.result) == null) ? sr :
|
|
|
+ reducer.apply(tr, sr));
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ReduceValuesTask<K,V>
|
|
|
+ extends BulkTask<K,V,V> {
|
|
|
+ final BiFun<? super V, ? super V, ? extends V> reducer;
|
|
|
+ V result;
|
|
|
+ ReduceValuesTask<K,V> rights, nextRight;
|
|
|
+ ReduceValuesTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ ReduceValuesTask<K,V> nextRight,
|
|
|
+ BiFun<? super V, ? super V, ? extends V> reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final V getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final BiFun<? super V, ? super V, ? extends V> reducer;
|
|
|
+ if ((reducer = this.reducer) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new ReduceValuesTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, reducer)).fork();
|
|
|
+ }
|
|
|
+ V r = null;
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ V v = p.val;
|
|
|
+ r = (r == null) ? v : reducer.apply(r, v);
|
|
|
+ }
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
|
|
|
+ t = (ReduceValuesTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ V tr, sr;
|
|
|
+ if ((sr = s.result) != null)
|
|
|
+ t.result = (((tr = t.result) == null) ? sr :
|
|
|
+ reducer.apply(tr, sr));
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class ReduceEntriesTask<K,V>
|
|
|
+ extends BulkTask<K,V,Entry<K,V>> {
|
|
|
+ final BiFun<Entry<K,V>, Entry<K,V>, ? extends Entry<K,V>> reducer;
|
|
|
+ Entry<K,V> result;
|
|
|
+ ReduceEntriesTask<K,V> rights, nextRight;
|
|
|
+ ReduceEntriesTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ ReduceEntriesTask<K,V> nextRight,
|
|
|
+ BiFun<Entry<K,V>, Entry<K,V>, ? extends Entry<K,V>> reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Entry<K,V> getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final BiFun<Entry<K,V>, Entry<K,V>, ? extends Entry<K,V>> reducer;
|
|
|
+ if ((reducer = this.reducer) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new ReduceEntriesTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, reducer)).fork();
|
|
|
+ }
|
|
|
+ Entry<K,V> r = null;
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = (r == null) ? p : reducer.apply(r, p);
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
|
|
|
+ t = (ReduceEntriesTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ Entry<K,V> tr, sr;
|
|
|
+ if ((sr = s.result) != null)
|
|
|
+ t.result = (((tr = t.result) == null) ? sr :
|
|
|
+ reducer.apply(tr, sr));
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceKeysTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final Fun<? super K, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ U result;
|
|
|
+ MapReduceKeysTask<K,V,U> rights, nextRight;
|
|
|
+ MapReduceKeysTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceKeysTask<K,V,U> nextRight,
|
|
|
+ Fun<? super K, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<? super K, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceKeysTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, reducer)).fork();
|
|
|
+ }
|
|
|
+ U r = null;
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p.key)) != null)
|
|
|
+ r = (r == null) ? u : reducer.apply(r, u);
|
|
|
+ }
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
|
|
|
+ t = (MapReduceKeysTask<K,V,U>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ U tr, sr;
|
|
|
+ if ((sr = s.result) != null)
|
|
|
+ t.result = (((tr = t.result) == null) ? sr :
|
|
|
+ reducer.apply(tr, sr));
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceValuesTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final Fun<? super V, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ U result;
|
|
|
+ MapReduceValuesTask<K,V,U> rights, nextRight;
|
|
|
+ MapReduceValuesTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceValuesTask<K,V,U> nextRight,
|
|
|
+ Fun<? super V, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<? super V, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceValuesTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, reducer)).fork();
|
|
|
+ }
|
|
|
+ U r = null;
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p.val)) != null)
|
|
|
+ r = (r == null) ? u : reducer.apply(r, u);
|
|
|
+ }
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
|
|
|
+ t = (MapReduceValuesTask<K,V,U>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ U tr, sr;
|
|
|
+ if ((sr = s.result) != null)
|
|
|
+ t.result = (((tr = t.result) == null) ? sr :
|
|
|
+ reducer.apply(tr, sr));
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceEntriesTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final Fun<Entry<K,V>, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ U result;
|
|
|
+ MapReduceEntriesTask<K,V,U> rights, nextRight;
|
|
|
+ MapReduceEntriesTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceEntriesTask<K,V,U> nextRight,
|
|
|
+ Fun<Entry<K,V>, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final Fun<Entry<K,V>, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceEntriesTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, reducer)).fork();
|
|
|
+ }
|
|
|
+ U r = null;
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p)) != null)
|
|
|
+ r = (r == null) ? u : reducer.apply(r, u);
|
|
|
+ }
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
|
|
|
+ t = (MapReduceEntriesTask<K,V,U>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ U tr, sr;
|
|
|
+ if ((sr = s.result) != null)
|
|
|
+ t.result = (((tr = t.result) == null) ? sr :
|
|
|
+ reducer.apply(tr, sr));
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceMappingsTask<K,V,U>
|
|
|
+ extends BulkTask<K,V,U> {
|
|
|
+ final BiFun<? super K, ? super V, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ U result;
|
|
|
+ MapReduceMappingsTask<K,V,U> rights, nextRight;
|
|
|
+ MapReduceMappingsTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceMappingsTask<K,V,U> nextRight,
|
|
|
+ BiFun<? super K, ? super V, ? extends U> transformer,
|
|
|
+ BiFun<? super U, ? super U, ? extends U> reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final U getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final BiFun<? super K, ? super V, ? extends U> transformer;
|
|
|
+ final BiFun<? super U, ? super U, ? extends U> reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceMappingsTask<K,V,U>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, reducer)).fork();
|
|
|
+ }
|
|
|
+ U r = null;
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; ) {
|
|
|
+ U u;
|
|
|
+ if ((u = transformer.apply(p.key, p.val)) != null)
|
|
|
+ r = (r == null) ? u : reducer.apply(r, u);
|
|
|
+ }
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
|
|
|
+ t = (MapReduceMappingsTask<K,V,U>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ U tr, sr;
|
|
|
+ if ((sr = s.result) != null)
|
|
|
+ t.result = (((tr = t.result) == null) ? sr :
|
|
|
+ reducer.apply(tr, sr));
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceKeysToDoubleTask<K,V>
|
|
|
+ extends BulkTask<K,V,Double> {
|
|
|
+ final ObjectToDouble<? super K> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ final double basis;
|
|
|
+ double result;
|
|
|
+ MapReduceKeysToDoubleTask<K,V> rights, nextRight;
|
|
|
+ MapReduceKeysToDoubleTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceKeysToDoubleTask<K,V> nextRight,
|
|
|
+ ObjectToDouble<? super K> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Double getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToDouble<? super K> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ double r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceKeysToDoubleTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.key));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
|
|
|
+ t = (MapReduceKeysToDoubleTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceValuesToDoubleTask<K,V>
|
|
|
+ extends BulkTask<K,V,Double> {
|
|
|
+ final ObjectToDouble<? super V> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ final double basis;
|
|
|
+ double result;
|
|
|
+ MapReduceValuesToDoubleTask<K,V> rights, nextRight;
|
|
|
+ MapReduceValuesToDoubleTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceValuesToDoubleTask<K,V> nextRight,
|
|
|
+ ObjectToDouble<? super V> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Double getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToDouble<? super V> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ double r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceValuesToDoubleTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.val));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
|
|
|
+ t = (MapReduceValuesToDoubleTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceEntriesToDoubleTask<K,V>
|
|
|
+ extends BulkTask<K,V,Double> {
|
|
|
+ final ObjectToDouble<Entry<K,V>> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ final double basis;
|
|
|
+ double result;
|
|
|
+ MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
|
|
|
+ MapReduceEntriesToDoubleTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceEntriesToDoubleTask<K,V> nextRight,
|
|
|
+ ObjectToDouble<Entry<K,V>> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Double getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToDouble<Entry<K,V>> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ double r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceEntriesToDoubleTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
|
|
|
+ t = (MapReduceEntriesToDoubleTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceMappingsToDoubleTask<K,V>
|
|
|
+ extends BulkTask<K,V,Double> {
|
|
|
+ final ObjectByObjectToDouble<? super K, ? super V> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ final double basis;
|
|
|
+ double result;
|
|
|
+ MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
|
|
|
+ MapReduceMappingsToDoubleTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceMappingsToDoubleTask<K,V> nextRight,
|
|
|
+ ObjectByObjectToDouble<? super K, ? super V> transformer,
|
|
|
+ double basis,
|
|
|
+ DoubleByDoubleToDouble reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Double getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectByObjectToDouble<? super K, ? super V> transformer;
|
|
|
+ final DoubleByDoubleToDouble reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ double r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceMappingsToDoubleTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.key, p.val));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
|
|
|
+ t = (MapReduceMappingsToDoubleTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceKeysToLongTask<K,V>
|
|
|
+ extends BulkTask<K,V,Long> {
|
|
|
+ final ObjectToLong<? super K> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ final long basis;
|
|
|
+ long result;
|
|
|
+ MapReduceKeysToLongTask<K,V> rights, nextRight;
|
|
|
+ MapReduceKeysToLongTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceKeysToLongTask<K,V> nextRight,
|
|
|
+ ObjectToLong<? super K> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Long getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToLong<? super K> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ long r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceKeysToLongTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.key));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
|
|
|
+ t = (MapReduceKeysToLongTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceValuesToLongTask<K,V>
|
|
|
+ extends BulkTask<K,V,Long> {
|
|
|
+ final ObjectToLong<? super V> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ final long basis;
|
|
|
+ long result;
|
|
|
+ MapReduceValuesToLongTask<K,V> rights, nextRight;
|
|
|
+ MapReduceValuesToLongTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceValuesToLongTask<K,V> nextRight,
|
|
|
+ ObjectToLong<? super V> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Long getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToLong<? super V> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ long r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceValuesToLongTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.val));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
|
|
|
+ t = (MapReduceValuesToLongTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceEntriesToLongTask<K,V>
|
|
|
+ extends BulkTask<K,V,Long> {
|
|
|
+ final ObjectToLong<Entry<K,V>> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ final long basis;
|
|
|
+ long result;
|
|
|
+ MapReduceEntriesToLongTask<K,V> rights, nextRight;
|
|
|
+ MapReduceEntriesToLongTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceEntriesToLongTask<K,V> nextRight,
|
|
|
+ ObjectToLong<Entry<K,V>> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Long getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToLong<Entry<K,V>> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ long r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceEntriesToLongTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
|
|
|
+ t = (MapReduceEntriesToLongTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceMappingsToLongTask<K,V>
|
|
|
+ extends BulkTask<K,V,Long> {
|
|
|
+ final ObjectByObjectToLong<? super K, ? super V> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ final long basis;
|
|
|
+ long result;
|
|
|
+ MapReduceMappingsToLongTask<K,V> rights, nextRight;
|
|
|
+ MapReduceMappingsToLongTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceMappingsToLongTask<K,V> nextRight,
|
|
|
+ ObjectByObjectToLong<? super K, ? super V> transformer,
|
|
|
+ long basis,
|
|
|
+ LongByLongToLong reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Long getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectByObjectToLong<? super K, ? super V> transformer;
|
|
|
+ final LongByLongToLong reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ long r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceMappingsToLongTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.key, p.val));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
|
|
|
+ t = (MapReduceMappingsToLongTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceKeysToIntTask<K,V>
|
|
|
+ extends BulkTask<K,V,Integer> {
|
|
|
+ final ObjectToInt<? super K> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ final int basis;
|
|
|
+ int result;
|
|
|
+ MapReduceKeysToIntTask<K,V> rights, nextRight;
|
|
|
+ MapReduceKeysToIntTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceKeysToIntTask<K,V> nextRight,
|
|
|
+ ObjectToInt<? super K> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Integer getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToInt<? super K> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ int r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceKeysToIntTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.key));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
|
|
|
+ t = (MapReduceKeysToIntTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceValuesToIntTask<K,V>
|
|
|
+ extends BulkTask<K,V,Integer> {
|
|
|
+ final ObjectToInt<? super V> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ final int basis;
|
|
|
+ int result;
|
|
|
+ MapReduceValuesToIntTask<K,V> rights, nextRight;
|
|
|
+ MapReduceValuesToIntTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceValuesToIntTask<K,V> nextRight,
|
|
|
+ ObjectToInt<? super V> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Integer getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToInt<? super V> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ int r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceValuesToIntTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.val));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
|
|
|
+ t = (MapReduceValuesToIntTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceEntriesToIntTask<K,V>
|
|
|
+ extends BulkTask<K,V,Integer> {
|
|
|
+ final ObjectToInt<Entry<K,V>> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ final int basis;
|
|
|
+ int result;
|
|
|
+ MapReduceEntriesToIntTask<K,V> rights, nextRight;
|
|
|
+ MapReduceEntriesToIntTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceEntriesToIntTask<K,V> nextRight,
|
|
|
+ ObjectToInt<Entry<K,V>> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Integer getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectToInt<Entry<K,V>> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ int r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceEntriesToIntTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
|
|
|
+ t = (MapReduceEntriesToIntTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @SuppressWarnings("serial")
|
|
|
+ static final class MapReduceMappingsToIntTask<K,V>
|
|
|
+ extends BulkTask<K,V,Integer> {
|
|
|
+ final ObjectByObjectToInt<? super K, ? super V> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ final int basis;
|
|
|
+ int result;
|
|
|
+ MapReduceMappingsToIntTask<K,V> rights, nextRight;
|
|
|
+ MapReduceMappingsToIntTask
|
|
|
+ (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
|
|
+ MapReduceMappingsToIntTask<K,V> nextRight,
|
|
|
+ ObjectByObjectToInt<? super K, ? super V> transformer,
|
|
|
+ int basis,
|
|
|
+ IntByIntToInt reducer) {
|
|
|
+ super(p, b, i, f, t); this.nextRight = nextRight;
|
|
|
+ this.transformer = transformer;
|
|
|
+ this.basis = basis; this.reducer = reducer;
|
|
|
+ }
|
|
|
+ public final Integer getRawResult() { return result; }
|
|
|
+ public final void compute() {
|
|
|
+ final ObjectByObjectToInt<? super K, ? super V> transformer;
|
|
|
+ final IntByIntToInt reducer;
|
|
|
+ if ((transformer = this.transformer) != null &&
|
|
|
+ (reducer = this.reducer) != null) {
|
|
|
+ int r = this.basis;
|
|
|
+ for (int i = baseIndex, f, h; batch > 0 &&
|
|
|
+ (h = ((f = baseLimit) + i) >>> 1) > i;) {
|
|
|
+ addToPendingCount(1);
|
|
|
+ (rights = new MapReduceMappingsToIntTask<K,V>
|
|
|
+ (this, batch >>>= 1, baseLimit = h, f, tab,
|
|
|
+ rights, transformer, r, reducer)).fork();
|
|
|
+ }
|
|
|
+ for (Node<K,V> p; (p = advance()) != null; )
|
|
|
+ r = reducer.apply(r, transformer.apply(p.key, p.val));
|
|
|
+ result = r;
|
|
|
+ CountedCompleter<?> c;
|
|
|
+ for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
|
|
+ @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
|
|
|
+ t = (MapReduceMappingsToIntTask<K,V>)c,
|
|
|
+ s = t.rights;
|
|
|
+ while (s != null) {
|
|
|
+ t.result = reducer.apply(t.result, s.result);
|
|
|
+ s = t.rights = s.nextRight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ---------------- Counters -------------- */
|
|
|
+
|
|
|
+ // Adapted from LongAdder and Striped64.
|
|
|
+ // See their internal docs for explanation.
|
|
|
+
|
|
|
+ // A padded cell for distributing counts
|
|
|
+ static final class CounterCell {
|
|
|
+ volatile long p0, p1, p2, p3, p4, p5, p6;
|
|
|
+ volatile long value;
|
|
|
+ volatile long q0, q1, q2, q3, q4, q5, q6;
|
|
|
+ CounterCell(long x) { value = x; }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Holder for the thread-local hash code determining which
|
|
|
+ * CounterCell to use. The code is initialized via the
|
|
|
+ * counterHashCodeGenerator, but may be moved upon collisions.
|
|
|
+ */
|
|
|
+ static final class CounterHashCode {
|
|
|
+ int code;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Generates initial value for per-thread CounterHashCodes.
|
|
|
+ */
|
|
|
+ static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Increment for counterHashCodeGenerator. See class ThreadLocal
|
|
|
+ * for explanation.
|
|
|
+ */
|
|
|
+ static final int SEED_INCREMENT = 0x61c88647;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Per-thread counter hash codes. Shared across all instances.
|
|
|
+ */
|
|
|
+ static final ThreadLocal<CounterHashCode> threadCounterHashCode =
|
|
|
+ new ThreadLocal<CounterHashCode>();
|
|
|
+
|
|
|
+
|
|
|
+ final long sumCount() {
|
|
|
+ CounterCell[] as = counterCells; CounterCell a;
|
|
|
+ long sum = baseCount;
|
|
|
+ if (as != null) {
|
|
|
+ for (int i = 0; i < as.length; ++i) {
|
|
|
+ if ((a = as[i]) != null)
|
|
|
+ sum += a.value;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return sum;
|
|
|
+ }
|
|
|
+
|
|
|
+ // See LongAdder version for explanation
|
|
|
+ private final void fullAddCount(long x, CounterHashCode hc,
|
|
|
+ boolean wasUncontended) {
|
|
|
+ int h;
|
|
|
+ if (hc == null) {
|
|
|
+ hc = new CounterHashCode();
|
|
|
+ int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
|
|
|
+ h = hc.code = (s == 0) ? 1 : s; // Avoid zero
|
|
|
+ threadCounterHashCode.set(hc);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ h = hc.code;
|
|
|
+ boolean collide = false; // True if last slot nonempty
|
|
|
+ for (;;) {
|
|
|
+ CounterCell[] as; CounterCell a; int n; long v;
|
|
|
+ if ((as = counterCells) != null && (n = as.length) > 0) {
|
|
|
+ if ((a = as[(n - 1) & h]) == null) {
|
|
|
+ if (cellsBusy == 0) { // Try to attach new Cell
|
|
|
+ CounterCell r = new CounterCell(x); // Optimistic create
|
|
|
+ if (cellsBusy == 0 &&
|
|
|
+ U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
|
|
|
+ boolean created = false;
|
|
|
+ try { // Recheck under lock
|
|
|
+ CounterCell[] rs; int m, j;
|
|
|
+ if ((rs = counterCells) != null &&
|
|
|
+ (m = rs.length) > 0 &&
|
|
|
+ rs[j = (m - 1) & h] == null) {
|
|
|
+ rs[j] = r;
|
|
|
+ created = true;
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ cellsBusy = 0;
|
|
|
+ }
|
|
|
+ if (created)
|
|
|
+ break;
|
|
|
+ continue; // Slot is now non-empty
|
|
|
+ }
|
|
|
+ }
|
|
|
+ collide = false;
|
|
|
+ }
|
|
|
+ else if (!wasUncontended) // CAS already known to fail
|
|
|
+ wasUncontended = true; // Continue after rehash
|
|
|
+ else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
|
|
|
+ break;
|
|
|
+ else if (counterCells != as || n >= NCPU)
|
|
|
+ collide = false; // At max size or stale
|
|
|
+ else if (!collide)
|
|
|
+ collide = true;
|
|
|
+ else if (cellsBusy == 0 &&
|
|
|
+ U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
|
|
|
+ try {
|
|
|
+ if (counterCells == as) {// Expand table unless stale
|
|
|
+ CounterCell[] rs = new CounterCell[n << 1];
|
|
|
+ for (int i = 0; i < n; ++i)
|
|
|
+ rs[i] = as[i];
|
|
|
+ counterCells = rs;
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ cellsBusy = 0;
|
|
|
+ }
|
|
|
+ collide = false;
|
|
|
+ continue; // Retry with expanded table
|
|
|
+ }
|
|
|
+ h ^= h << 13; // Rehash
|
|
|
+ h ^= h >>> 17;
|
|
|
+ h ^= h << 5;
|
|
|
+ }
|
|
|
+ else if (cellsBusy == 0 && counterCells == as &&
|
|
|
+ U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
|
|
|
+ boolean init = false;
|
|
|
+ try { // Initialize table
|
|
|
+ if (counterCells == as) {
|
|
|
+ CounterCell[] rs = new CounterCell[2];
|
|
|
+ rs[h & 1] = new CounterCell(x);
|
|
|
+ counterCells = rs;
|
|
|
+ init = true;
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ cellsBusy = 0;
|
|
|
+ }
|
|
|
+ if (init)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
|
|
|
+ break; // Fall back on using base
|
|
|
+ }
|
|
|
+ hc.code = h; // Record index for next time
|
|
|
+ }
|
|
|
+
|
|
|
+ // Unsafe mechanics
|
|
|
+ private static final sun.misc.Unsafe U;
|
|
|
+ private static final long SIZECTL;
|
|
|
+ private static final long TRANSFERINDEX;
|
|
|
+ private static final long BASECOUNT;
|
|
|
+ private static final long CELLSBUSY;
|
|
|
+ private static final long CELLVALUE;
|
|
|
+ private static final long ABASE;
|
|
|
+ private static final int ASHIFT;
|
|
|
+
|
|
|
+ static {
|
|
|
+ try {
|
|
|
+ U = getUnsafe();
|
|
|
+ Class<?> k = ConcurrentHashMapV8.class;
|
|
|
+ SIZECTL = U.objectFieldOffset
|
|
|
+ (k.getDeclaredField("sizeCtl"));
|
|
|
+ TRANSFERINDEX = U.objectFieldOffset
|
|
|
+ (k.getDeclaredField("transferIndex"));
|
|
|
+ BASECOUNT = U.objectFieldOffset
|
|
|
+ (k.getDeclaredField("baseCount"));
|
|
|
+ CELLSBUSY = U.objectFieldOffset
|
|
|
+ (k.getDeclaredField("cellsBusy"));
|
|
|
+ Class<?> ck = CounterCell.class;
|
|
|
+ CELLVALUE = U.objectFieldOffset
|
|
|
+ (ck.getDeclaredField("value"));
|
|
|
+ Class<?> ak = Node[].class;
|
|
|
+ ABASE = U.arrayBaseOffset(ak);
|
|
|
+ int scale = U.arrayIndexScale(ak);
|
|
|
+ if ((scale & (scale - 1)) != 0)
|
|
|
+ throw new Error("data type scale not a power of two");
|
|
|
+ ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
|
|
|
+ } catch (Exception e) {
|
|
|
+ throw new Error(e);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
|
|
|
+ * Replace with a simple call to Unsafe.getUnsafe when integrating
|
|
|
+ * into a jdk.
|
|
|
+ *
|
|
|
+ * @return a sun.misc.Unsafe
|
|
|
+ */
|
|
|
+ private static sun.misc.Unsafe getUnsafe() {
|
|
|
+ try {
|
|
|
+ return sun.misc.Unsafe.getUnsafe();
|
|
|
+ } catch (SecurityException tryReflectionInstead) {}
|
|
|
+ try {
|
|
|
+ return java.security.AccessController.doPrivileged
|
|
|
+ (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
|
|
|
+ public sun.misc.Unsafe run() throws Exception {
|
|
|
+ Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
|
|
|
+ for (java.lang.reflect.Field f : k.getDeclaredFields()) {
|
|
|
+ f.setAccessible(true);
|
|
|
+ Object x = f.get(null);
|
|
|
+ if (k.isInstance(x))
|
|
|
+ return k.cast(x);
|
|
|
+ }
|
|
|
+ throw new NoSuchFieldError("the Unsafe");
|
|
|
+ }});
|
|
|
+ } catch (java.security.PrivilegedActionException e) {
|
|
|
+ throw new RuntimeException("Could not initialize intrinsics",
|
|
|
+ e.getCause());
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|